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DFT Convergence to FT
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FT Pricing Formulas

Accuracy

Absolute Mean Error computed w.r.t. i onan (¢, T ) space
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DFT Convergence to FT

Given the General DFT
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Convergence Theorems for Uniform Grids
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Condition 1

Uniform Discretization Grid
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FT Pricing Formulas

Stability
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DFT Convergence to FT

The Convergence Theorem (C Th)
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Convergence Theorems for Uniform Grids
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Condition 2
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DFT Convergence to FT

Co via FT
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Convergence Theorems for Uniform Grids
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Condition 1 Condition 2
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DFT Simplified Formula
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Convergence Theorems for Uniform Grids

Nyquist — Shannon Limit (N-S)
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Convergence Theorems for Uniform Grids

Theorems of
The Call Price computed via Convergence

Theorem is equal to the Call Price computed
via Trapezoid/Simpson Quadrature Rule
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1
Gaussian Grids
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Convergence Theorems for Non Uniform Gaussian Grids
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1
Gaussian Grids
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Optimal choice of discretization points
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Convergence Theorems for Non Uniform Gaussian Grids
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Convergence Theorems for Uniform Grids
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Non Uniform Discretization Grid
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1
Gaussian Grids
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Convergence Theorems for Non Uniform Gaussian Grids
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Convergence Theorems for Uniform Grids
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 1

Gaussian Grids
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Optimal choice of discretization points
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Gauss Laguerre

Gander Gautschi
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Convergence Theorems for Non Uniform Gaussian Grids

Condition 2
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Convergence Theorems for Non Uniform Gaussian Grids
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Convergence Theorems for Non Uniform Gaussian Grids

Theorems of
The Call Price computed via Convergence
Theorem is equal to the Call Price computed

via Gauss Laguerre/Gander Gautschi
Quadrature Rule
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Fast Option Pricing
6{ via DFT

NonUniform FFT
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Uniform FFT

FFT Cooley — Tukey Algorithm
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The DFT computational cost drops
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Non Uniform FFT

Gaussian Gridding
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Step 1
Gaussian Projection of the non uniformly sampled
characteristic function on a oversampled uniform grid
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Uniform FFT

Since the Nyquist — Shannon Limit,
the pricing formulas

Give accurate prices
ONLY
Around the Nyquist Frequency
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Non Uniform FFT

f.(5)
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Fast Option Pricing

C, via DFT

Fast Fourier Trasform
Algorithms
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Uniform FFT

Cooley-Tukey DFT Characterization

— 1

1) = flxm) + WY Ij.f[.\'.__ 3

I 1

Iterated Bottom — Up for N stages
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It gives the FFT Cooley — Tukey Algorithm
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Uniform FFT

Since the Nyquist — Shannon Limit,
the pricing formulas

Give accurate prices
ONLY
Around the Nyquist Frequency
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Approx. 25% of prices can be accepted

Non Uniform FFT
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Fast Option Pricing

C, via DFT

Uniform FFT
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Uniform FFT
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Non Uniform FFT

Gaussian Gridding

—4 1

Step 2
FFT computation on the oversampled grid
of the Fourier Coefficient of the
reprojected characteristic function
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Non Uniform FFT

Gaussian Gridding
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Step 3

Elimination of frequencies greater than
Nyquist — Shannon Limit
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The Computational Framework

ACCURACY

Ersse- B Mosked via DFT
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2000 Prices computed

] £3CONSOB

‘The Computational Framework

SPEED

At very low time scales, the
differences disappear

FET 0.01 sec. N/A N/A
< T o
NU-FFT 74 02 sec. | 0.0261sec. | 0.0301 sec.

‘Computation of 4000 prices on a Centrino 1600Mhz — 2gb RAM
Mean Value over 1000 runs
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Non Uniform FFT

Gaussian Gridding
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Step 4
homothetic
rescaling from Gaussian scale
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‘The Computational Framework

STABILITY
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Non Uniform FFT

Computational Cost
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The major computational cost of the
Procedure is the FFT on the oversampled grid
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Choosing the oversampling ratio
M, = M
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The total cost of the procedure is = 2Aflog 2\
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‘The Computational Framework

STABILITY
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The error of 90% of prices
computed lies in the

103
RANGE OF PRECISION
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Conclusions

* NU - FFT allows the use of Gaussian Grids
* NU - FFT is indifferent to Nyquist _Shannon Limit
* NU - FFT is at least as accurate as FFT

* NU - FFT is more stable than FFT

* NU - FFT speed performances are indistinguishable
from FFT’s ones
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The Computational Framework

SPEED

the NU — FFT is around
2 time slower than FFT
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Conclusions

NU - FFT
is a natural candidate for
operational use on trading desks
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