PRICING ED HEDGING DEGLI STRUMENTI FINANZIARI DERIVATI

ASPETTI TEORICI ED OPERATIVI

REVIEW OPTION PRICING THEORY

- Cos'e' un opzione?
- IL MODELLO DI SHARPE-RENDLEMANN-BARTTER
- IL Modello di Cox-Ross-Rubinstein

BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL

RISK MANAGEMENT

GRECHE

REVIEW OPTION PRICING THEORY

· Cos'e' un opzione?

IL Modello di Cox-Ross-Rubinstein

BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL

CALL (PUT) OPTION:

DIRITTO AD ACQUISTARE (VENDERE) UN TITOLO AD UN PREZZO PREFISSATO (C.D. *STRIKE PRICE)* A SEGUITO DEL PAGAMENTO DI UN PREMIO

OPZIONI EUROPEE:

ESERCIZIO DEL DIRITTO = A SCADENZA

OPZIONI AMERICANE:

ESERCIZIO DEL DIRITTO = FINO A SCADENZA

Posizioni

PAYOFF

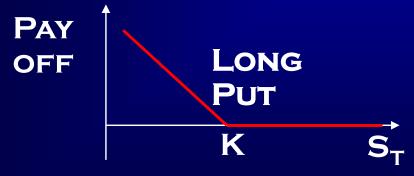
LONG POSITION IN UNA CALL OPTION:

 $MAX(S_T - K, 0)$

LONG POSITION IN UNA PUT OPTION:

 $MAX(K - S_T, 0)$

SHORT POSITION IN UNA CALL OPTION:

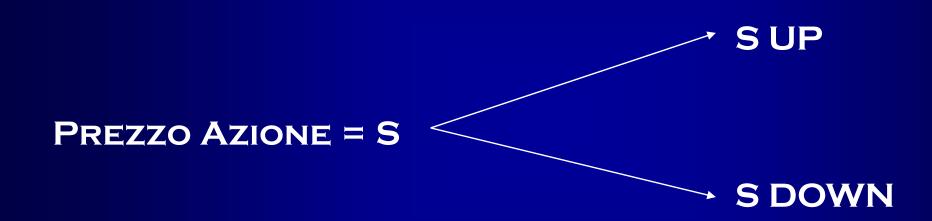

 $MIN(K - S_T, 0)$

SHORT POSITION IN UNA PUT OPTION:

 $MIN(S_T - K, 0)$

REVIEW OPTION PRICING THEORY

Cos'e' un opzione?


IL MODELLO DI S-R-B

BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL

IL MODELLO DI SHARPE-RENDLEMAN-BARTTER

PR. SOTTOSTANTE = \$20

$$SUP = $22$$

$$SDOWN = $18$$

IL MODELLO DI SHARPE-RENDLEMAN-BARTTER

PREZZO AZIONE = S
PR. OPZIONE = O

S UP O UP = F(PAY-OFF OPZIONE)

S DOWN
O DOWN = F(PAY-OFF OPZIONE)

- → CALL
- → STRIKE = \$21
- → Tasso risk free Uniperiodale = 12%

PR. AZIONE = \$20

PR. CALL = C

SUP = \$22CUP = MAX(\$22-21,0)

S DOWN = \$18C DOWN = MAX(\$18-21,0)

S UP = \$22 C UP = \$1 PR. AZIONE = \$20 PR. CALL = C S Down = \$18 C Down = 0

ESEMPIO: IL PRICING - UN APPROCCIO INTUITIVO

LONG POSITION: A AZIONI

SHORT POSITION: 1 CALL OPTION

ESEMPIO: IL PRICING — UN APPROCCIO INTUITIVO

Long Position
Short Positio

ESEMPIO: IL PRICING - UN APPROCCIO INTUITIVO

NEUTRALITA' AL RISCHIO

Long
$$SUP = + $22$$
 = Long $SDOWN = + 18
SHORT $CUP = - 1 = SHORT $CDOWN = 0$

$$22 * \Delta - 1 = 18 * \Delta$$

$$\Delta = 0,25$$

ESEMPIO: IL *Pricing* — UN APPROCCIO INTUITIVO

Non Arbitraggio

RENDIMENTO ATTESO DELL'OPZIONE = RISK FREE RATE

VALORE A SCADENZA ATTUALIZZATO

VALORE INIZIALE

 $20 * \Delta \cdot C = (22 * \Delta \cdot 1)/(1.04)$ OPPURE $20 * \Delta \cdot C = (18 * \Delta)/(1.04)$

ESEMPIO: IL PRICING — UN APPROCCIO INTUITIVO

NEUTRALITA' AL RISCHIO $\Rightarrow \Delta = 0,25$

Non Arbitraggio \Rightarrow 20 * \triangle - C = (18 * \triangle)/(1.04)

C = 0,673

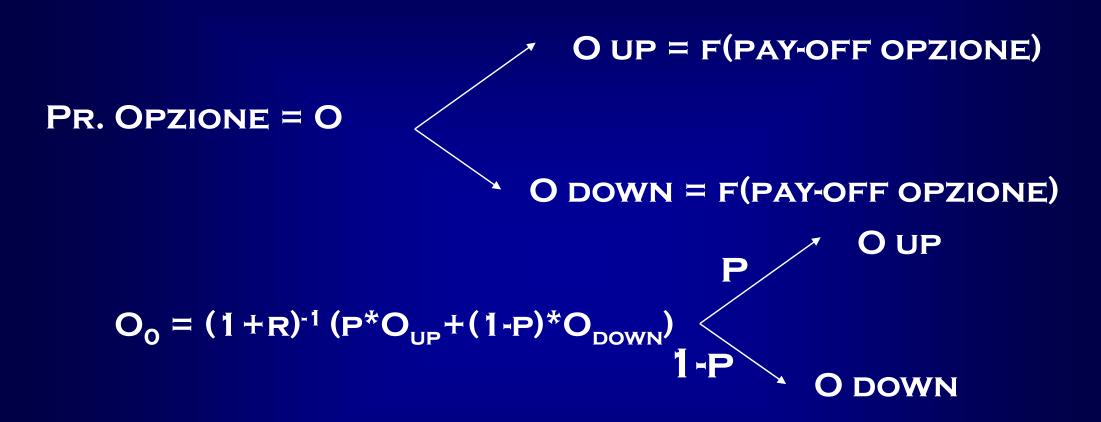
IL MODELLO DI SHARPE-RENDLEMAN-BARTTER IL PRICING – L'APPROCCIO FORMALE NUMERICO

PREZZO AZIONE = S PR. OPZIONE = O S UP O UP = F(PAY-OFF OPZIONE)

S DOWN O DOWN = F(PAY-OFF OPZIONE)

IL MODELLO DI SHARPE-RENDLEMAN-BARTTER IL PRICING – L'APPROCCIO PROBABILISTICO INTUITIVO

Non Arbitraggio


RENDIMENTO ATTESO DELL'OPZIONE = RISK FREE RATE

PREZZO DELL'OPZIONE = PAY-OFF A SCADENZA SCONTATI

IL MODELLO DI SHARPE-RENDLEMAN-BARTTER

P E' DETTA MISURA DI MARTINGALA

IL MODELLO DI SHARPE-RENDLEMAN-BARTTER

IL PRICING - L'APPROCCIO PROBABILISTICO FORMALE

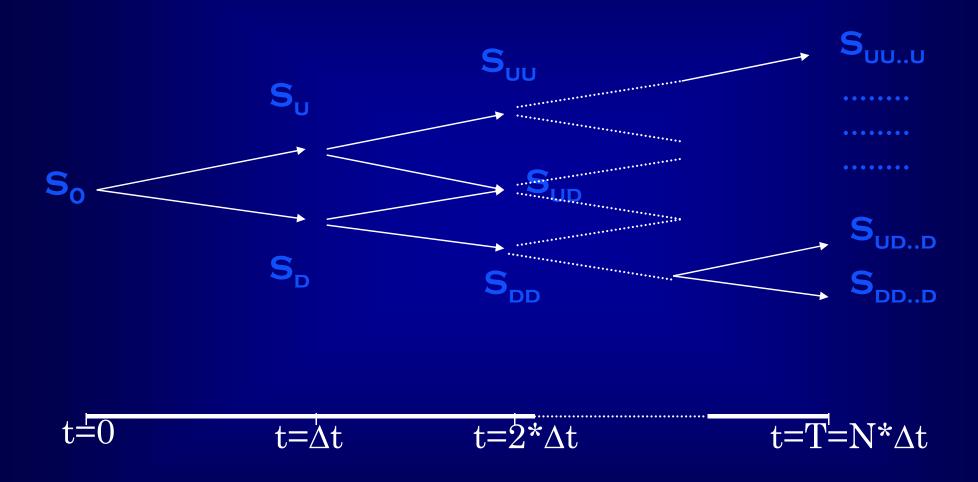
$$O_0 = (1 + R)^{-1} E_P(O_T)$$

1-P

O DOWN

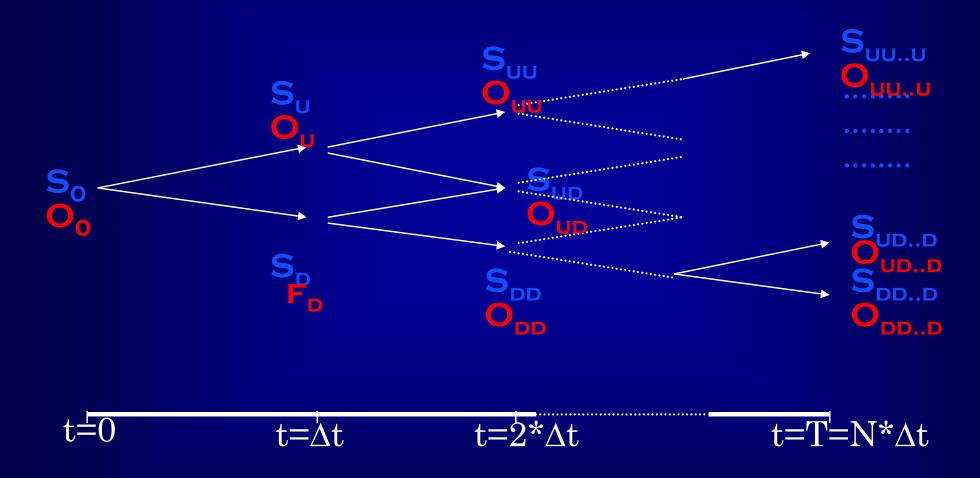
REVIEW OPTION PRICING THEORY

Cos'e' un opzione?


IL MODELLO DI C-R-R

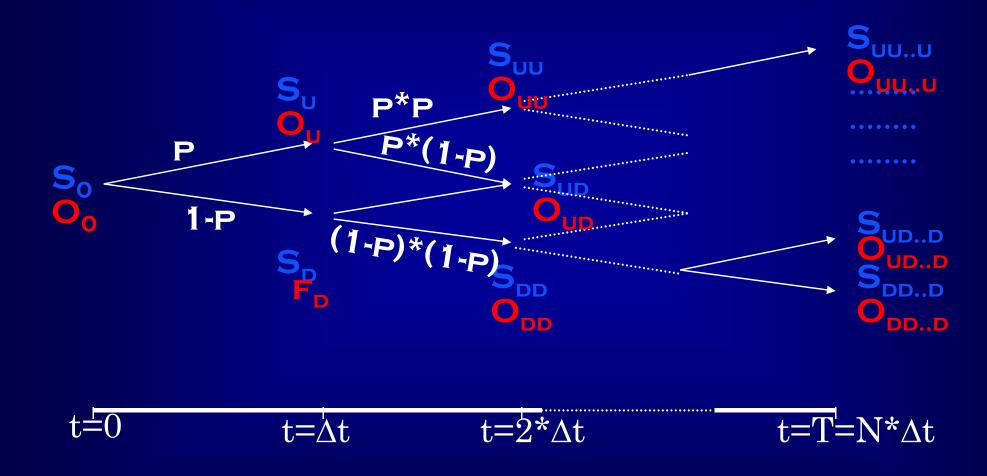
BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL



IL MODELLO DI COX-ROSS-RUBINSTEIN IL PRICING – L'APPROCCIO INTUITIVO

IL MODELLO DI COX-ROSS-RUBINSTEIN IL PRICING – L'APPROCCIO INTUITIVO


IL Modello di Cox-Ross-Rubinstein

IL PRICING - L'APPROCCIO NUMERICO FORMALE

$$c_{T-m} = \frac{S_{T-m}}{\hat{r}^m} \sum_{j=a}^{m} {m \choose j} \left(p \frac{u}{\hat{r}} \right)^j \left((1-p) \frac{d}{\hat{r}} \right)^{m-j} - \frac{K}{\hat{r}^m} \sum_{j=a}^{m} {m \choose j} p^j (1-p)^{m-j};$$

$$a = \inf \left\{ j; S_{T-m} u^j d^{m-j} > K \right\}$$

IL MODELLO DI COX-ROSS-RUBINSTEIN IL *Pricing* – L'approccio Probabilistico Intuitivo

IL Modello di Cox-Ross-Rubinstein

IL PRICING - L'APPROCCIO PROBABILISTICO FORMALE

$$c_{T-m} = \frac{S_{T-m}}{\hat{r}^m} \sum_{j=a}^{m} {m \choose j} \left(p \frac{u}{\hat{r}} \right)^j \left((1-p) \frac{d}{\hat{r}} \right)^{m-j} - \frac{K}{\hat{r}^m} \sum_{j=a}^{m} {m \choose j} p^j (1-p)^{m-j};$$

$$a = \inf \left\{ j; S_{T-m} u^j d^{m-j} > K \right\}$$

P E' DETTA MISURA DI MARTINGALA

REVIEW OPTION PRICING THEORY

- Cos'e' un opzione?
- IL MODELLO DI SHARPE-RENDLEMANN-BARTTER
- IL MODELLO DI COX-ROSS-RUBINSTEIN

BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL

LA DEFINIZIONE DELLE VARIABILI

$$x = (1+r)^{-\Delta t}$$

$$u=f(\sigma, \Delta t)$$

$$p=[(1+r)-d]/(u-d)$$

1

2

3

2n

2n+1

IL VALORE DEL SOTTOSTANTE A SCADENZA

 S_{T} C В D u^nS_0 $u^{n-1}S_0$ 3 $u^{n-2}S_0$ $d^{n-1}S_0$ 2n d^nS_0 2n+1

IL PAY-OFF DELL'OPZIONE A SCADENZA: ES. <u>CALL</u>

	A	В	\mathbf{C}	D
1 2	$u^{n-1}S_0$	T MAX(A1-K,0) MAX(A2-K,0)		
3 2n 2n+1	•••••	MAX(A3-K,0) MAX(A2n-K,0) MAX(A2n+1-K,0)		

IL PREZZO COME VALORE ATTESO SCONTATO DEI PAY-OFF

	A	В	\mathbf{C}	D
	$ m S_{T}$	T	$ ext{T-}\Delta ext{T}$	
1	u^nS_0	MAX(A1-K,0)	x*(p*B1+q*B2)	
2	$u^{n-1}S_0$	MAX(A2-K,0)	x*(p*B1+q*B3)	
3	$u^{n-2}S_0$	MAX(A3-K,0)	x*(p*B2+q*B4)	
	•••••	•••••	•••••	
2n	$d^{n-1}S_0$	MAX(A2n-K,0)	x*(p*B2n-1+q*B2n+1)	
2n+1	d^nS_0	MAX(A2n+1-K,0)	x*(p*B2n+q*B2n+1)	

IL PREZZO COME VALORE ATTESO SCONTATO DEI PAY-OFF

	A	В	\mathbf{C}	D
	S_{T}	T	T - ΔT	Τ-2ΔΤ
1	u^nS_0	MAX(A1-K,0)	x*(p*B1+q*B2)	x*(p*C1+q*C2)
2	$u^{n-1}S_0$	MAX(A2-K,0)	x*(p*B1+q*B3)	x*(p*C1+q*C3)
3	$u^{n-2}S_0$	MAX(A3-K,0)	x*(p*B2+q*B4)	x*(p*C2+q*C4)
2n	$d^{n-1}S_0$	MAX(A2n-K,0)	x*(p*B2n-1+q*B2n+1)	x*(p*C2n-1+q*C2n+1)
2n+1	d^nS_0	MAX(A2n+1-K,0)	x*(p*B2n+q*B2n+1)	x*(p*C2n+q*C2n+1)

	x=	$(1+r)^{-\Delta t}$	$u=f(\sigma, \Delta t)$	p=[(1+r)-d]/(u-d)
	K=	strike	d=1/u	q=1-p
	A	В	\mathbf{C}	D
	S_{T}	T	T - ΔT	Τ-2ΔΤ
1	u^nS_0	MAX(A1-K,0)	x*(p*B1+q*B2)	x*(p*C1+q*C2)
2	$u^{n-1}S_0$	MAX(A2-K,0)	x*(p*B1+q*B3)	x*(p*C1+q*C3)
3	$u^{n-2}S_0$	MAX(A3-K,0)	x*(p*B2+q*B4)	x*(p*C2+q*C4)
2n	$d^{n-1}S_0$	MAX(A2n-K,0)	x*(p*B2n-1+q*B2n+1)	x*(p*C2n-1+q*C2n+1)
2n+1	$\mathrm{d^nS_0}$	MAX(A2n+1-K,0)	x*(p*B2n+q*B2n+1)	$x^*(p^*C2n+q^*C2n+1)$

L PAY-OFF DELL'OPZIONE A SCADENZA: ES. PUT

 \mathbf{C} A B D S_{T} u^nS_0 MAX(K-A1,0) $u^{n-1}S_0 MAX(K -A2,0)$ 2 $u^{n-2}S_0$ MAX(K -A3,0) 3 $d^{n-1}S_0$ MAX(**K** -A2n,0) 2n $d^{n}S_{0}$ MAX(**K** -A2n+1,0) 2n+1

IL PREZZO COME VALORE ATTESO SCONTATO DEI PAY-OFF

	A	В	C	D
	S_{T}	T	T - ΔT	
1	u^nS_0	MAX(K -A1,0)	x*(p*B1+q*B2)	
2	$u^{n-1}S_0$	MAX(K - A2,0)	x*(p*B1+q*B3)	
3	$u^{n-2}S_0$	MAX(K -A3,0)	x*(p*B2+q*B4)	
	•••••	•••••	•••••	
2n	$d^{n-1}S_0$	MAX(K -A2n,0)	x*(p*B2n-1+q*B2n+1)	
2n+1	d^nS_0	MAX(K -A2n+1,0)	x*(p*B2n+q*B2n+1)	

IL PRICING - L'IMPLEMENTAZIONE

IL PREZZO COME VALORE ATTESO SCONTATO DEI PAY-OFF

	A	В	C	D
	S_{T}	T	T - ΔT	T - $2\Delta T$
1	u^nS_0	MAX(K -A1,0)	x*(p*B1+q*B2)	x*(p*C1+q*C2)
2	$u^{n-1}S_0$	MAX(K - A2,0)	x*(p*B1+q*B3)	x*(p*C1+q*C3)
3	$u^{n-2}S_0$	MAX(K -A3,0)	x*(p*B2+q*B4)	x*(p*C2+q*C4)
2n	$d^{n-1}S_0$	MAX(K -A2n,0)	x*(p*B2n-1+q*B2n+1)	x*(p*C2n-1+q*C2n+1)
2n+1	$\mathrm{d}^{\mathrm{n}}\mathrm{S}_{0}$	MAX(K -A2n+1,0)	x*(p*B2n+q*B2n+1)	$x^*(p^*C2n+q^*C2n+1)$

IL PRICING — L'IMPLEMENTAZIONE

	x=	(1+r)- ^{Δ t}	$u=f(\sigma, \Delta t)$	p=[(1+r)-d]/(u-d)
	K=	strike	d=1/u	q=1-p
	A	В	\mathbf{C}	D
	S_{T}	T	T - ΔT	Τ-2ΔΤ
1	u^nS_0	MAX(K -A1,0)	x*(p*B1+q*B2)	x*(p*C1+q*C2)
2	$u^{n-1}S_0$	MAX(K - A2,0)	x*(p*B1+q*B3)	x*(p*C1+q*C3)
3	$u^{n-2}S_0$	MAX(K -A3,0)	x*(p*B2+q*B4)	x*(p*C2+q*C4)
2n	$d^{n-1}S_0$	MAX(K -A2n,0)	x*(p*B2n-1+q*B2n+1)	x*(p*C2n-1+q*C2n+1)
2n+1	$\mathrm{d}^{\mathrm{n}}\mathrm{S}_{\mathrm{0}}$	MAX(K -A2n+1,0)	x*(p*B2n+q*B2n+1)	x*(p*C2n+q*C2n+1)

IL PRICING - L'IMPLEMENTAZIONE

$S_0 =$	100	r=	=	3%	σ=		20%	T=		1
χ=	0.9925	u:	=	1.1052	p=		0.5126	steps	$\varsigma =$	4
K=	100	d:	=	0.9048	q=		0.4874	∆t=		0.25
$\mathbf{S}_{\mathbf{T}}$	T		,	T-∧ t	T-2 ∆	t	T-3	Δt	١	T-4Δ t
				_						
140 10	4	0.10		44.05	20	62				
149.18	4	9.18		41.95	38	.63	Ć	35.33		33.01
134.99	34	4.99		35.73	32	.41	3	31.08		29.28
122 1/	2	7 1 1		22.00	23	63		2220		22.07

149.18	49.18	41.95	38.63	35.33	33.01
134.99	34.99	35.73	32.41	31.08	29.28
122.14	22.14	22.89	23.63	23.38	22.97
110.52	10.52	11.26	14.23	14.79	16.03
100.00	0.00	5.35	5.73	8.56	8.94
90.48	0.00	0.00	2.72	2.92	5.02
81.87	0.00	0.00	0.00	1.39	1.48
74.08	0.00	0.00	0.00	0.00	0.70
67.03	0.00	0.00	0.00	0.00	0.00

REVIEW OPTION PRICING THEORY

- Cos'e' un opzione?
- IL MODELLO DI SHARPE-RENDLEMANN-BARTTER
- IL Modello di Cox-Ross-Rubinstein

BINOMIAL OPTION PRICING

OPZIONI EUROPEE E EXCEL

RISK MANAGEMENT

DEFINITI:

S IL PROCESSO DELL'AZIONE
B IL PROCESSO DEL BOND
f IL PROCESSO DEL DERIVATO

OVE:

$$f=f(S,t)$$

SIA:

V IL PORTAFOGLIO DI REPLICA DEL DERIVATO

IL PORTAFOGLIO DI REPLICA DEL DERIVATO

$$V_t = f(S, t) = N_s S_t + N_B B_t$$

OVE:

 N_s Numero di azioni

 $N_{\!B}$ Numero di Bond

DEFINIZIONE DEI PROCESSI

HP:

$$dS_t = \mu S_t dt + \sigma S_t dZ_t$$

OVE:

$$dZ_t \sim arepsilon \sqrt{dt}$$
 $arepsilon \sim N(0,1)$ $rac{dS_t}{S_t} \sim N(\mu dt, \sigma^2 dt)$

DEFINIZIONE DEI PROCESSI

HP:

$$dB_t = rB_t dt$$

LA CUI SOLUZIONE:

$$B_t = e^{rt} \quad \forall t \in [0, T]$$

DEFINIZIONE DEI PROCESSI

HP:

$$dV_t = N_s dS_t + N_B dB_t$$

OVE:

$$V_t = f(S, t)$$

UTILIZZANDO LE DEFINIZIONI DEI PROCESSI DI B E S

$$dV_t = N_s dS_t + N_B dB_t$$

$$dV_{t} = N_{s} \left(\mu S_{t} dt + \sigma S_{t} dZ_{t}\right) + N_{B} \left(r B_{t} dt\right)$$

...MOLTIPLICANDO

$$dV_t = N_s \mu S_t dt + N_s \sigma S_t dZ_t + N_B r B_t dt$$

RACCOGLIENDO:

$$dV_t = (N_s \mu S_t + N_B r B_t) dt + \sigma S_t N_s dZ_t$$

DEFINENDO:

$$\mu S_t = a$$

$$\sigma S_t = b$$

$$dS_t = adt + bdZ_t$$

IL PROCESSO DI ITO

LA SDE ASSOCIATA A f = f(S, t) SI TROVA UTILIZZANDO IL LEMMA DI ITO (LA REGOLA DI DIFFERENZIAZIONE PER IL MOTO BROWNIANO)

 $df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}ds + \frac{1}{2}b^2\frac{\partial^2 f}{\partial S^2}dt$

SOSTITUENDO LA SDE ASSOCIATA A S SI HA:

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}(adt + bdZ_t) + \frac{1}{2}b^2\frac{\partial^2 f}{\partial S^2}dt$$

...SEMPLIFICANDO

$$df = \left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S}a + rac{1}{2}b^2rac{\partial^2 f}{\partial S^2}
ight)dt + brac{\partial f}{\partial S}dZ_t$$

RICORDANDO:

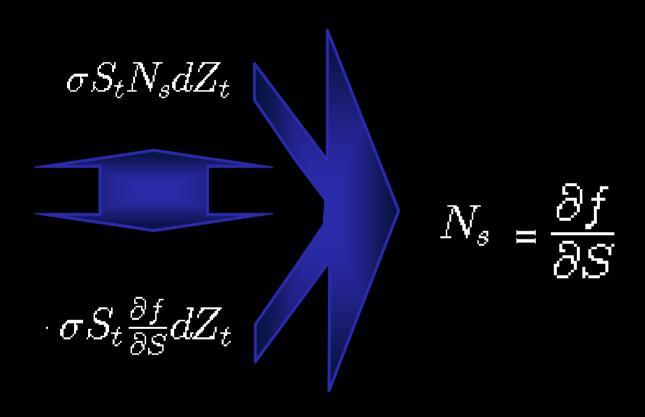
$$\mu S_t = a$$

$$\sigma S_t = b$$

$$df = \left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S}\mu S_t + rac{1}{2}\left(\sigma S_t
ight)^2rac{\partial^2 f}{\partial S^2}
ight)dt + \sigma S_trac{\partial f}{\partial S}dZ_t$$

DATO CHE PER HP:

$$dV_t = df$$


...ALLORA CONFRONTIAMO I TERMINI STOCASTICI:

$$df = \left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S} \mu S_t + rac{1}{2} \left(\sigma S_t
ight)^2 rac{\partial^2 f}{\partial S^2}
ight) dt + \sigma S_t rac{\partial f}{\partial S} dZ_t$$

$$dV_t = (N_s \mu S_t + N_B r B_t) dt + \sigma S_t N_s dZ_t$$

...VALE A DIRE:

RICORDANDO:

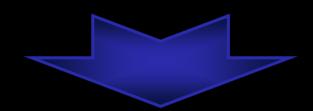
$$V_t = f(S, t) = N_s S_t + N_B B_t$$

$$N_B = \frac{1}{B} \left(f(S, t) - N_s S \right)$$

$$N_{S} = rac{\partial f}{\partial S}$$

$$N_{B} = rac{1}{B} \left(f(S,t) - rac{\partial f}{\partial S} S
ight)$$
 $N_{B} = rac{1}{B} \left(f(S,t) - rac{\partial f}{\partial S} S
ight)$

SOSTITUENDO NELLA SDE DI V


$$N_{S} = \frac{\partial f}{\partial S}$$

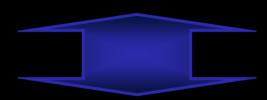
$$N_{B} = \frac{1}{B} \left(f(S, t) - \frac{\partial f}{\partial S} S \right)$$

$$dV_t = (N_s \mu S_t + N_B r B_t) dt + \sigma S_t N_s dZ_t$$

$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + \frac{1}{B}\left(f(S,t) - \frac{\partial f}{\partial S}S\right)rB_t\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

SEMPLIFICANDO:

$$dV_t = \left(rac{\partial f}{\partial S} \mu S_t + rac{1}{B} \left(f(S,t) - rac{\partial f}{\partial S} S
ight) r B_t
ight) dt + \sigma S_t rac{\partial f}{\partial S} dZ_t$$


$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S, t) - \frac{\partial f}{\partial S}rS\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

DATO CHE PER HP:

$$dV_t = df$$

...ALLORA CONFRONTIAMO I TERMINI DETERMINISTICI:

$$df = \left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S} \mu S_t + rac{1}{2} \left(\sigma S_t
ight)^2 rac{\partial^2 f}{\partial S^2}
ight) dt + \sigma S_t rac{\partial f}{\partial S} dZ_t$$

$$dV_t = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S, t) - \frac{\partial f}{\partial S}rS\right)dt + \sigma S_t \frac{\partial f}{\partial S}dZ_t$$

$$\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right) = \left(\frac{\partial f}{\partial S}\mu S_t + rf(S,t) - \frac{\partial f}{\partial S}rS\right)$$

$$\left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S}rS + rac{1}{2}\left(\sigma S_{t}
ight)^{2}rac{\partial^{2}f}{\partial S^{2}}
ight) = rf(S,t)$$

...DETTA ANCHE BLACK-SCHOLES PDE

...CONSIDERATO CHE IL TERMINE dZ È UGUALE PER $dV\ e\ df$

LA BLACK-SCHOLES PDE DESCRIVE NEL TEMPO

$$f=f(S,t)$$

IL DERIVATO È REPLICABILE CON

 N_s Numero di azioni

 N_{B} Numero di Bond

...DEFINITI

$$\Theta = \frac{\partial f}{\partial t}$$

$$\Delta = \frac{\partial f}{\partial S}$$

$$\Gamma = \frac{\partial^2 f}{\partial S^2}$$

$$dV = df$$

$$\left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}rS + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right) = rf(S, t)$$

$$\left(\Theta + \Delta rS + \frac{1}{2} (\sigma S_t)^2 \Gamma\right) = rf(S, t)$$

È IMPORTANTE OSSERVARE CHE LA DERIVAZIONE ATTRAVERSO LA FORMULA DI TAYLOR DELLA ESPRESSIONE DIFFERENZIALE DI f=f(S,t) CONDUCE ALLO STESSO RISULTATO OTTENUTO CON IL LEMMA DI ITO

DERIVAZIONE DI df ATTRAVERSO LA FORMULA DI TAYLOR

CONSIDERATO CHE dS È DI ORDINE \sqrt{dt} . INFATTI...


$$dS_t = \mu S_t dt + \sigma S_t dZ_t \qquad dZ_t \sim \varepsilon \sqrt{dt}$$

L'ESPANSIONE DI TAYLOR SI PUÒ FERMARE A o(dt)

$$df = rac{\partial f}{\partial t}dt + rac{\partial f}{\partial S}dS + rac{1}{2}rac{\partial^2 f}{\partial S^2}dS^2 + o(dt)$$

SOSTITENDO IN \overline{df} LA DEFINIZIONE DI \overline{dS}

$$df = rac{\partial f}{\partial t}dt + rac{\partial f}{\partial S}dS + rac{1}{2}rac{\partial^2 f}{\partial S^2}dS^2 + o(dt)$$

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}\left(\mu S_t dt + \sigma S_t dZ_t\right) + \frac{1}{2} \frac{\partial^2 f}{\partial S^2}\left(\mu S_t dt + \sigma S_t dZ_t\right)^2 + o(dt)$$

CI CONCENTRIAMO SU:

$$(\mu S_t dt + \sigma S_t dZ_t)^2$$

$$(\mu^2 S_t^2 dt^2 + \sigma^2 S_t^2 dt + 2\mu S_t \sigma S_t dZ_t dt)$$

$$\sigma^2 S_t^2 dt$$

...SEMPLIFICANDO

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}(\mu S_t dt + \sigma S_t dZ_t) + \frac{1}{2}\sigma^2 S_t^2 dt + o(dt)$$

$$df = \left(\frac{\partial f}{\partial t} + \frac{\partial f}{\partial S}\mu S_t + \frac{1}{2}\left(\sigma S_t\right)^2 \frac{\partial^2 f}{\partial S^2}\right) dt + \sigma S_t \frac{\partial f}{\partial S} dZ_t + o(dt)$$

$$df = \left(rac{\partial f}{\partial t} + rac{\partial f}{\partial S}\mu S_t + rac{1}{2}\left(\sigma S_t
ight)^2rac{\partial^2 f}{\partial S^2}
ight)dt + \sigma S_trac{\partial f}{\partial S}dZ_t$$

CONSOB

C.V.D.

...MA SE L'ESPANSIONE IN TAYLOR

CONDUCE ALLO
STESSO RISULTATO
DEL LEMMA DI ITO

...MA SE IL LEMMA DI ITO HA MOSTRATO CHE df=dV

...VALE A DIRE CHE IL VALORE DI UN DERIVATO PUÒ ESSERE STUDIATO ATTRAVERSO IL VALORE DI UN PORTAFOGLIO DI N_s NUMERO DI AZIONI N_s NUMERO DI BOND

...ALLORA SENZA PERDITE DI GENERALITÀ UTILIZZIAMO L'ESPANSIONE IN TAYLOR PER STUDIARE COSA SUCCEDE QUANDO

$$f=f(S,t,\sigma)$$

DERIVAZIONE DI df ATTRAVERSO LA FORMULA DI TAYLOR

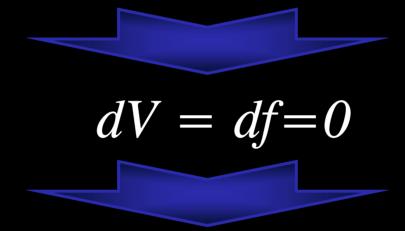
$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS + \frac{\partial f}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}dS^2 + \frac{1}{2}\frac{\partial^2 f}{\partial \sigma^2}d\sigma^2 + \frac{1}{2}\frac{\partial^2 f}{\partial t^2}dt^2 + \frac{\partial f}{\partial S\partial t}dtdS + \dots + o(dt)$$

L'ESPANSIONE DI TAYLOR SI PUÒ FERMARE A o(dt)

$$df = \frac{\partial f}{\partial t}dt + \frac{\partial f}{\partial S}dS + \frac{\partial f}{\partial \sigma}d\sigma + \frac{1}{2}\frac{\partial^2 f}{\partial S^2}dS^2 + o(dt)$$

...DEFINITI

$$\Theta = \frac{\partial f}{\partial t} \qquad \Delta = \frac{\partial f}{\partial S} \qquad V = \frac{\partial f}{\partial \sigma} \qquad \Gamma = \frac{\partial^2 f}{\partial S^2}$$


$$dV = df$$

$$df = \Theta dt + \Delta dS + \upsilon d\sigma + \frac{1}{2}\Gamma dS^2 + o(dt)$$

...POICHÈ ABBIAMO DIMOSTRATO CHE dV=df


SE VOGLIO EVITARE VARIAZIONI NEL PORTAFOGLIO

QUINDI, SI DOVRÀ OPERARE SULLE GRECHE

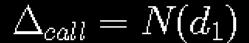
L'ATTIVITÀ DI HEDGING NEL CONCRETO

HP: MONDO BLACK-SCHOLES

$$C_t = S_t N(d_1) - K e^{-r(T-t)} N(d_2)$$

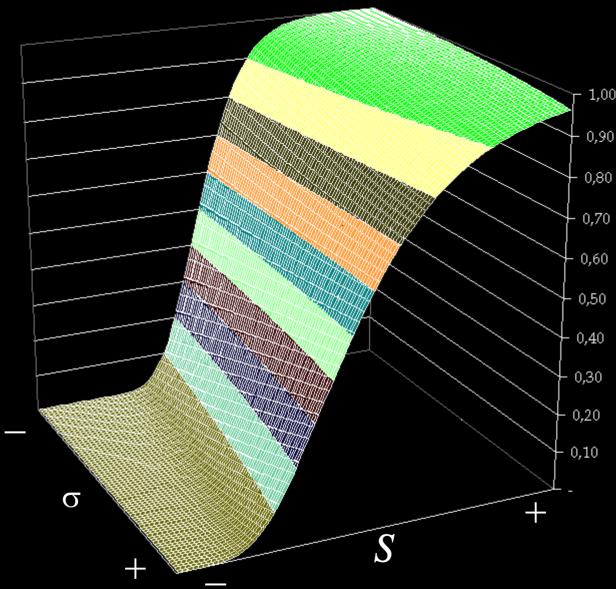
$$P_t = Ke^{-r(T-t)}N(-d_2) - S_tN(-d_1)$$

$$d_1 = rac{\ln rac{S_t}{K} + \left(r + rac{\sigma^2}{2}\right)(T - t)}{\sigma \sqrt{T - t}}$$


$$d_2 = rac{\ln rac{S_t}{K} + \left(r - rac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}}$$

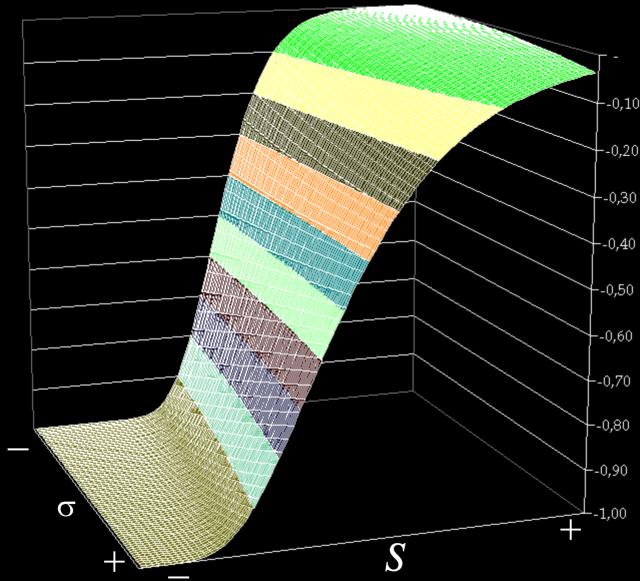
PER UNA CALL

PER UNA PUT

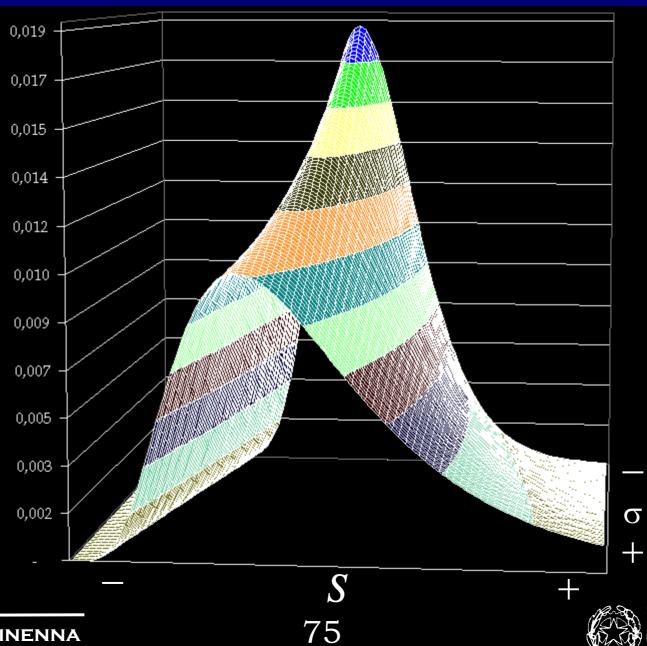

$$\Delta_{put} = N(d_1) - 1$$

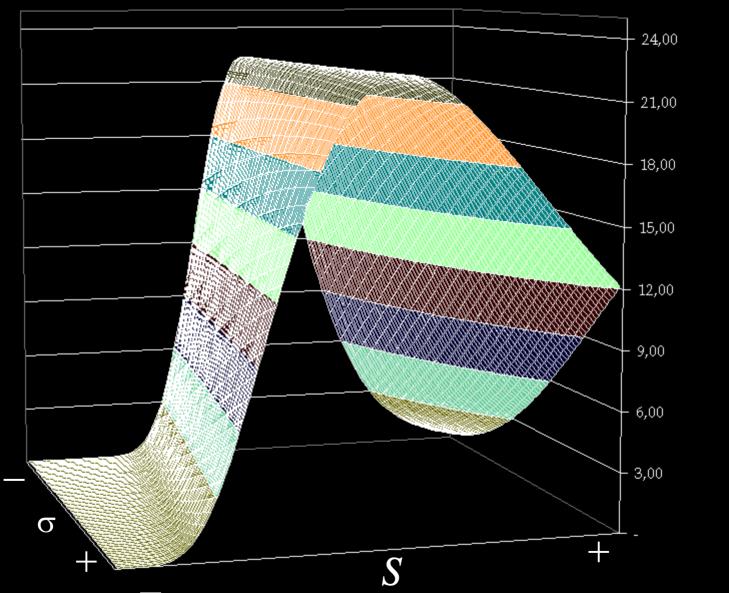
$$\Gamma = \frac{N'(d_1)}{S\sigma\sqrt{T-t}}$$

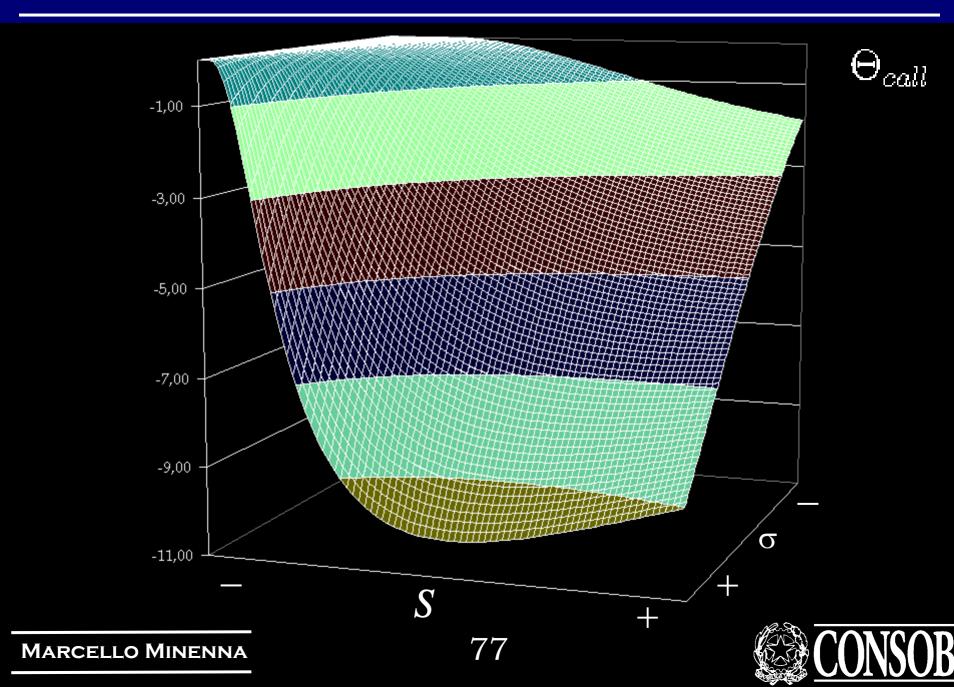
$$v = S \cdot N'(d_1)\sqrt{T-t}$$

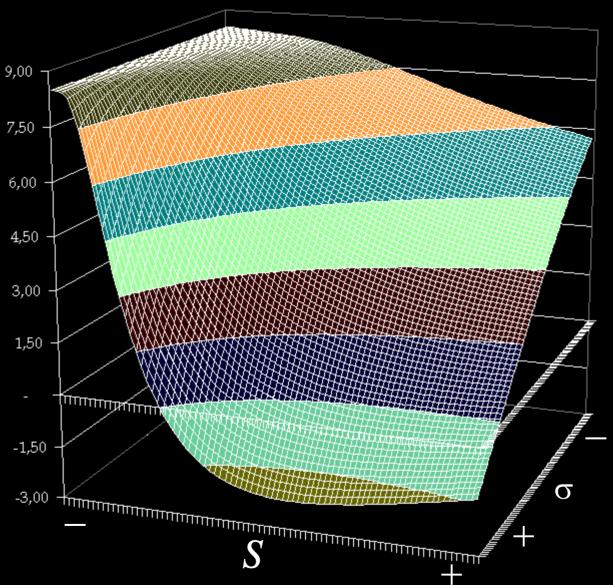

$$\Theta_{call} = (T - t)Ke^{-r(T - t)}N(d_2)$$

$$\Theta_{put} = -(T-t)Ke^{-r(T-t)}N(-d_2)$$


 Δ_{call}


 Δ_{put}




Ţ,

CONSOB

 Θ_{put}

LE GRECHE SONO ADDITIVE

Greche Portafoglio
$$=\sum_i w_i$$
Greche

$$\sum_i w_i = 1$$

IL A HEDGING

DERIVAZIONE DI df ATTRAVERSO LA FORMULA DI TAYLOR, ANCORCHÈ SOLO AL PRIMO TERMINE

$$df \approx \Delta dS + o(dt)$$

AL TEMPO T=0 SHORT 1 CALL

ALLA SCADENZA L'OPZIONE FINISCE IN – THE MONEY

IL A HEDGING - SHORT 1 CALL - IN — THE MONEY

Short 1000 call on 1 stock			Opzione e A				ΔPortfolio			
			Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	Δ Stoc k	Δ Stock Posit.	Total ∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	104,0	(1.000)	0,624630657	(625)	61	625	1	625	-
2	0,2250	100,4	(1.000)	0,567671079	(568)	(57)	568	1	568	-
3	0,2125	93,8	(1.000)	0,449626897	(450)	(118)	450	1	450	-
4	0,2000	103,3	(1.000)	0,613419529	(613)	163	613	1	613	-
5	0,1875	121,6	(1.000)	0,850633639	(851)	238	851	1	851	-
6	0 ,17 50	120,9	(1.000)	0,850534322	(851)	-	851	1	851	-
7	0,1625	120,5	(1.000)	0,853571891	(854)	3	854	1	854	-
8	0,1500	122,9	(1.000)	0,88234869	(882)	28	882	1	882	-
9	0,1375	129,0	(1.000)	0,931634606	(932)	50	932	1	932	-
10	0,1250	130,2	(1.000)	0,944999861	(945)	13	945	1	945	-
11	0,1125	126,8	(1.000)	0,935342021	(935)	(10)	935	1	935	-
12	0,1000	131 <i>,7</i>	(1.000)	0,966714307	(967)	32	967	1	967	-
13	0,0875	139,1	(1.000)	0,989168909	(989)	22	989	1	989	-
14	0,0750	162,9	(1.000)	0,999121066	(999)	10	999	1	999	-
15	0,0625	165,4	(1.000)	0,999355248	(999)	-	999	1	999	-
16	0,0500	162,1	(1.000)	0,999494634	(999)	-	999	1	999	-
17	0,0375	162,1	(1.000)	0,999624853	(1.000)	1	1.000	1	1.000	-
18	0,0250	157,1	(1.000)	0,999750027	(1.000)	-	1.000	1	1.000	-
19	0,0125	148,4	(1.000)	0,999875008	(1.000)	-	1.000	1	1.000	-
20	0,000	150,0	(1.000)	1	(1.000)	-	1.000	1	1.000	-

IL A HEDGING - SHORT 1 CALL - IN — THE MONEY

TEATIEBOING SHORT TORES IN THE MONET										
	D	ging Cash Flow	Delta Hedging portfolio "A" Value							
Stock	Option		Bank			Replic	ating Portf	olio		
Dollars in Stock (flusso)	Cash ez Shorting/Ezerci sing Option	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)	Dollars in Stock (stock)	Bank	Portfolio Value	Option value	Unwind value
56.400	10.378	46.022		46.022		56.400	(46.022)	10.378	(10.378)	
6.344		6.344	28,8	52.395		64.997	(52.395)	12.602	(12.480)	122
(5.723)		(5.723)	32,8	46.704		57.032	(46.704)	10.327	(10.060)	267
(11.072)		(11.072)	29,2	35.662		42.223	(35.662)	6.562	(6.429)	133
16.833		16.833	22,3	52.517		63.304	(52.517)	10.787	(11.167)	(380)
28.940		28.940	32,8	81.490		103.479	(81.490)		(24.517)	
-		-	50,9	81.541		102.880	(81.541)	21.339	(23.677)	
361		361	51,0	81.953		102.901	(81.953)	20.948	(23.089)	
3.442		3.442	51,2	85.446		108.417	(85.446)	22.971	(24.957)	<u> </u>
6.452		6.452	53,4	91.952		120.274	(91.952)	28.322	(30.315)	
1.692		1.692	57,5	93. 7 02		123.026	(93.702)		(31.207)	· · · ·
(1.268)		(1.268)	58,6	92.493		118.532	(92.493)		(27.818)	<u> </u>
4.216		4.216	57,8	96.766		127.392	(96.766)		(32.385)	<u> </u>
3.060		3.060	60,5	99.886		137.543	(99.886)		(39.460)	· · · ·
1.629		1.629	62,4	101.578		162.729	(101.578)		(63.145)	· · · ·
_			63,5	101.641		165.235	(101.641)		(65.609)	· · · ·
_			63,5	101.705		161.986	(101.705)		(62.317)	
162		162	63,6	101.931		162.108	(101.931)		(62.235)	

46.384 (48.486) (2.102) 47.839 (49.961) (2.122) CONSOB

(57.196)

(2.080)

157.110

148.442

149.961

(101.994)

(102.058)

(102.122)

55.116

101.994

102.058

102.122

63,7

63,8

63,8

(100.000)

AL TEMPO T=0 SHORT 1 CALL

ALLA SCADENZA L'OPZIONE FINISCE OUT — THE MONEY

IL A HEDGING - SHORT 1 CALL - OUT — THE MONEY

Short 1000 call on 1 stock			Opzione e 🛆				ΔPortfolio			
			Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	Δ Stoc k	Δ Stock Posit.	Total ∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	107,1	(1.000)	0,669595731	(670)	106	670	1	670	-
2	0,2250	98,7	(1.000)	0,539965684	(540)	(130)	540	1	540	-
3	0,2125	98,6	(1.000)	0,535439952	(535)	(5)	535	1	535	-
4	0,2000	98,1	(1.000)	0,52274553	(523)	(12)	523	1	523	-
5	0,1875	100,9	(1.000)	0,572217366	(572)	49	572	1	572	-
6	0,1750	103,8	(1.000)	0,623229667	(623)	51	623	1	623	-
7	0,1625	89,9	(1.000)	0,346231134	(346)	(277)	346	1	346	-
8	0,1500	83,0	(1.000)	0,201859233	(202)	(144)	202	1	202	-
9	0,1375	77,9	(1.000)	0,110027376	(110)	(92)	110	1	110	-
10	0,1250	74,6	(1.000)	0,061492554	(61)	(49)	61	1	61	-
11	0,1125	76,9	(1.000)	0,072830535	(73)	12	<i>7</i> 3	1	<i>7</i> 3	-
12	0,1000	70,2	(1.000)	0,016432088	(16)	(57)	16	1	16	-
13	0,0875	68,9	(1.000)	0,007800759	(8)	(8)	8	1	8	-
14	0,0750	69,5	(1.000)	0,005051823	(5)	(3)	5	1	5	-
15	0,0625	69,9	(1.000)	0,002681681	(3)	(2)	3	1	3	-
16	0,0500	64,8	(1.000)	7,23394E-05	-	(3)	-	1	-	-
17	0,0375	62,8	(1.000)	1,05616E-06	-	-	-	1	-	-
18	0,0250	63,0	(1.000)	3,36141E-09	-	-	-	1	-	-
19	0,0125	64,5	(1.000)	2,6642E-15	-	-	-	1	-	-
20	0,0000	66,7	(1.000)	0	-	-	-	1	-	-

IL A HEDGING - SHORT 1 CALL - OUT — THE MONEY

	Delta Hedging portfolio "A" Value									
Stock	Option	on Bank				Replica	ating Portf	olio		
Dollars in Stock (flusso)	Cash ez Shorting/Ezerci sing Option	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)	Dollars in Stock (stock)	Bank	Portfolio Value	Option value	Unwind value
56.400	10.3 7 8	46.022		46.022		56.400	(46.022)	10.378	(10.378)	-
11.355		11.355	28,8	57.406		71.772	(57.406)	14.366	(14.505)	(139)
(12.837)		(12.837)	35,9	44.605		53.324	(44.605)	8. 7 19	(9.141)	(422)
(493)		(493)	27,9	44.140		52.762	(44.140)	8.622	(8.790)	(168)
(1.177)		(1.177)	27,6	42.991		51.282	(42.991)	8.291	(8.201)	91
4.945		4.945	26,9	47.962		57.721	(47.962)	9.759	(9.464)	295
5.294		5.294	30,0	53.286		64.674	(53.286)		(10.883)	504
(24.908)		(24.908)	33,3	28.411		31.113	(28.411)	2.702	(3.783)	(1.081)
(11.953)		(11.953)	17,8	16.476		16.768	(16.476)	292	(1.662)	(1.370)
(7.166)		(7.166)	10,3	9.321		8.568	(9.321)	(753)	(711)	(1.465)
(3.655)		(3.655)	5,8	5.672		4.550	(5.672)	(1.122)	(328)	(1.450)
923		923	3,5	6.598		5.615	(6.598)	(983)	(392)	(1.376)
(4.001)		(4.001)	4,1	2.601		1.123	(2.601)	(1.478)	(62)	(1.540)
(551)		(551)	1,6	2.051		551	(2.051)	(1.499)	(25)	(1.525)
(208)		(208)	1,3	1.844		347	(1.844)	(1.497)		(1.511)
(140)		(140)	1,2	1.705		210	(1.705)	(1.496)		(1.502)
(195)		(195)	1,1	1.512		-	(1.512)	(1.512)	(0)	(1.512)
			0,9	1.513		-	(1.513)	(1.513)	(0)	(1.513)
-		-	0,9	1.514		-	(1.514)	(1.514)		(1.514)
-		-	0,9	1.515		_	(1.515)	(1.515)	-	(1.515)
-	_	-	0.9	1.516	(1.516)	_	(1.516)	(1.516)		(1.516)

INVESTOR EDUCATION

IL Δ - Γ hedging

DERIVAZIONE DI df ATTRAVERSO LA FORMULA DI TAYLOR, ARRIVANDO AL SECONDO TERMINE

$$dfpprox \Delta dS + rac{1}{2}\Gamma dS^2 + o(dt)$$

AL TEMPO T=0 SHORT 1 CALL

COME FACCIO A RENDERE IL MIO PORTAFOGLIO ANCHE Γ NEUTRALE

IL $\Delta - \Gamma$ HEDGING

...UN'INTUIZIONE È DI SEGUIRE UNA LOGICA ITERATIVA

PORTAFOGLIO Γ NEUTRAL

RICOMPOSIZIONE
PER LA

NEUTRALITY

...QUESTA LOGICA È CORRETTA DATO CHE IL Γ DI UN'AZIONE È O

...PER RENDERE IL MIO PORTAFOGLIO ANCHE Γ NEUTRALE ...

...HO BISOGNO DI UN'ALTRA OPZIONE

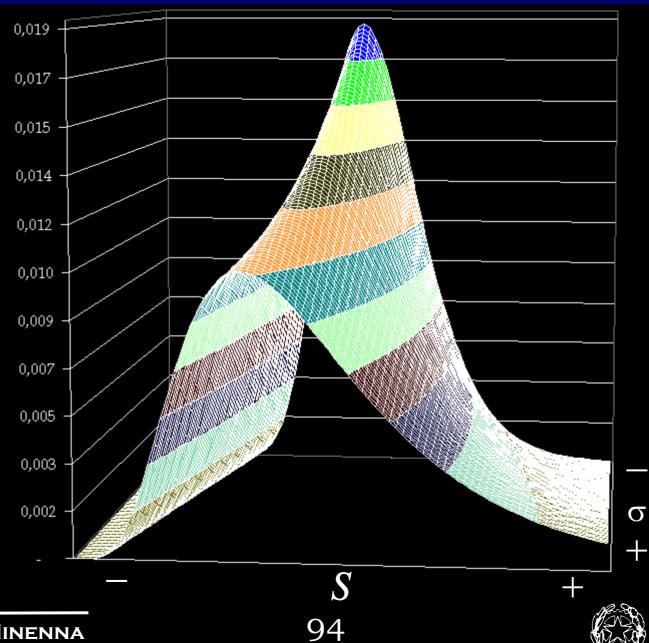
...CHE TIPO DI OPZIONE?

...UN'OPZIONE CHE MI PAREGGI IL Γ DELLA OPZIONE "SHORTATA"

... CHE TIPO DI OPZIONE?

...UN'OPZIONE CHE MI PAREGGI IL Γ DELLA OPZIONE "SHORTATA"

...E CHE NON MI CREI TROPPE
"DEFORMAZIONI" SUL DELTA DELLA
OPZIONE "SHORTATA"


... CHE TIPO DI OPZIONE?

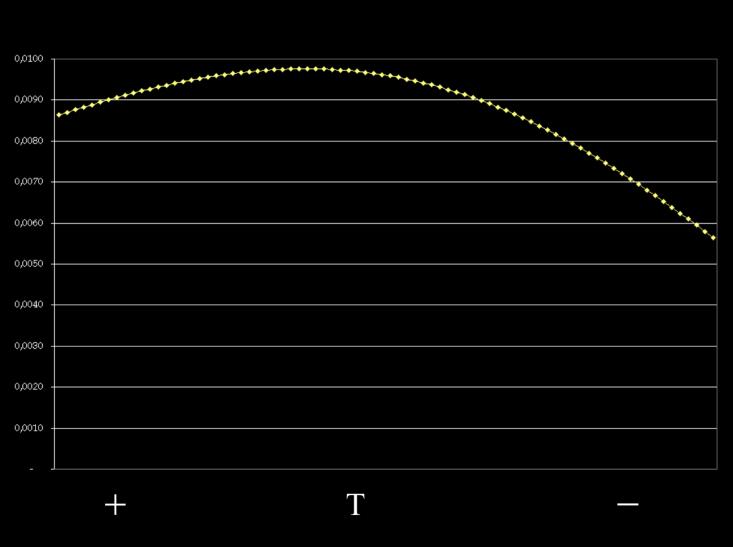
...ALCUNE CONSIDERAZIONI

IL Γ DI UN'OPZIONE È MAGGIORE PER LE ATM

INVESTOR EDUCATION

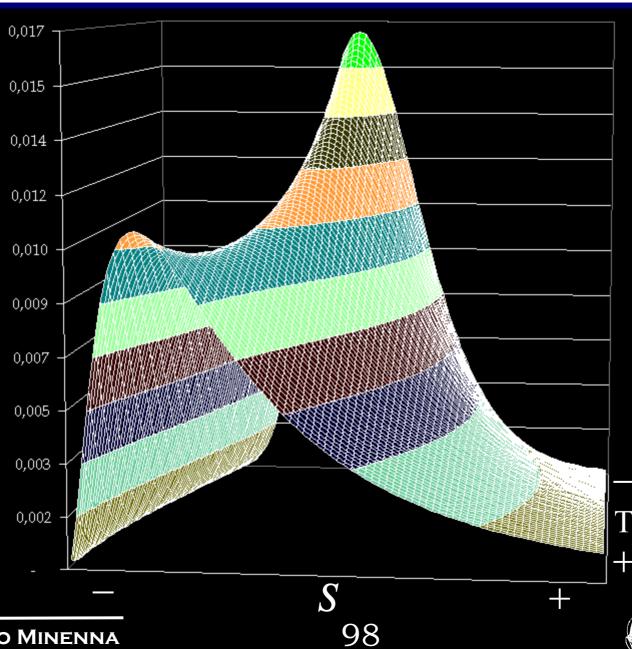
Γ

CONSOR


...CHE TIPO DI OPZIONE?

IL Γ DI UN'OPZIONE
FONDAMENTALMENTE
SI RIDUCE AL
PASSARE DEL TEMPO

INVESTOR EDUCATION


...CHE TIPO DI OPZIONE?

...ALCUNE CONSIDERAZIONI

IL Γ SUBISCE
DEFORMAZIONI AL
VARIARE DEL TEMPO
IN RELAZIONE ALLA
MONEYNESS

INVESTOR EDUCATION

IL $\Delta - \Gamma$ HEDGING

IL Γ DI UN'OPZIONE È MAGGIORE PER LE ATM IL Γ DI UN'OPZIONE
FONDAMENTALMENTE
SI RIDUCE AL
PASSARE DEL TEMPO

IL T SUBISCE
DEFORMAZIONI AL
VARIARE DEL TEMPO
IN RELAZIONE ALLA
MONEYNESS

SCEGLIERE OPZIONI A BREVE DURATA E ATM

RI-COMPORRE DINAMICAMENTE IL PORTAFOGLIO CON OPZIONI A LUNGA DURATA ATM

MARCELLO MINENNA

99

IL $\Delta - \Gamma$ HEDGING

SCEGLIERE OPZIONI A BREVE DURATA E ATM

TRADE-OFF:

- Costi di transazione
- STRATEGIE DI TRADING
- RISK LIMIT

RI-COMPORRE DINAMICAMENTE IL PORTAFOGLIO CON OPZIONI A LUNGA DURATA ATM

IL $\Delta - \Gamma$ HEDGING IN FORMULE

AL TEMPO T=0

SHORT 1 CALL (W)

DEFINISCO UN PORTAFOGLIO \(\triangle \) NEUTRALE "A"

LONG 1 OPZIONE (Z)

$$\Delta_{A} = 0$$

$$\Gamma_{\!\!\!A} = N * \Gamma_{\!\!\!W}$$

AL TEMPO T=0

PORTFOLIO B = PORTFOLIO A + N * Z

...LE GRECHE DI B?

IL $\Delta - \Gamma$ HEDGING IN FORMULE

AL TEMPO T=0

$$\Delta_{\mathsf{B}} = \Delta_{\mathsf{A}^+\mathsf{N}} \Delta_{\mathsf{Z}}$$

$$\Delta_{\mathbf{B}} = \mathbf{N} \Delta_{\mathbf{Z}}$$

IL $\Delta - \Gamma$ HEDGING IN FORMULE

AL TEMPO T=0

$$\Gamma_{\rm B} = \Gamma_{\rm A} + N \Gamma_{\rm Z}$$

$$\Gamma_{\rm B} = N_{\rm w} \Gamma_{\rm w} + N_{\rm z} \Gamma_{\rm z}$$

...DA QUI CHE PER AVERE $\Gamma_{\rm B}$ =0

$$\Gamma_{B} = N_{w}\Gamma_{w} + N_{z}\Gamma_{z}$$

$$0 = N_{w}\Gamma_{w} + N_{z}\Gamma_{z}$$

$$N_{z} = + \frac{N_{w}\Gamma_{w}}{\Gamma_{z}}$$

...IN ALTRI TERMINI PER AVERE UN PORTAFOGLIO Γ NEUTRALE

SI DOVRANNO COMPRARE $N_z = -\frac{\Gamma_w}{\Gamma_z}$ OPZIONI Z

IL $\Delta - \Gamma$ HEDGING IN FORMULE

...MA NON È FINITA QUI.

IL NUOVO PORTAFOGLIO B NON SARÀ A NEUTRALE

$$\Delta_{\mathbf{B}} = \mathbf{N} \Delta_{\mathbf{Z}}$$

RI-BILANCIARE IL PORTAFOGLIO A TAL FINE:

$$\Delta_{c} = 0$$

KURPIEL & RONCALLI (1998)

IL $\Delta - \Gamma$ HEDGING SU ORIZZONTI DI 5, 1, ½ GIORNI NON DÀ VANTAGGI SOSTANZIALI RISPETTO AL Δ HEDGING

IL $\Delta - \Gamma$ HEDGING — UN ESEMPIO

AL TEMPO T=0

SHORT 1 CALL (W)

DEFINISCO UN PORTAFOGLIO A NEUTRALE "A"

Long 1 call (z) con T_z>T_w; K_z>K_w

MANTERRÒ LA SCELTA DELL'OPZIONE "Z" FINO A SCADENZA

ALLA SCADENZA L'OPZIONE "W"FINISCE IN – THE MONEY

Short 1	.000 call on 1	l stock		Opzione e A		Azione e ∆				Δ Portfolio
			Q.	Δ	•					
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	Δ Stoc k	Δ Stock Posit.	Total ∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	102,0	(1.000)	0,593648325	(594)	30	594	1	594	-
2	0,2250	101,9	(1.000)	0,591419714	(591)	(3)	591	1	591	-
3	0,2125	104,3	(1.000)	0,629740916	(630)	39	630	1	630	-
4	0,2000	105,9	(1.000)	0,655754583	(656)	26	656	1	656	-
5	0,1875	109,6	(1.000)	0,713190152	(713)	57	<i>7</i> 13	1	713	-
б	0 ,17 50	109,2	(1.000)	0,710239361	(710)	(3)	7 10	1	710	-
7	0,1625	112,7	(1.000)	0,765213522	(765)	55	765	1	765	-
8	0,1500	112,1	(1.000)	0,762277787	(762)	(3)	762	1	762	-
9	0,1375	114,0	(1.000)	0,795097794	(795)	33	795	1	795	-
10	0,1250	116,0	(1.000)	0,828994045	(829)	34	829	1	829	-
11	0,1125	103,8	(1.000)	0,629405621	(629)	(200)	629	1	629	-
12	0,1000	97,7	(1.000)	0,482184607	(482)	(147)	482	1	482	-
13	0,0875	99,4	(1.000)	0,522140486	(522)	40	522	1	522	-
14	0,0750	92,6	(1.000)	0,31747734	(317)	(205)	31 <i>7</i>	1	317	-
15	0,0625	93,2	(1.000)	0,315146981	(315)	(2)	315	1	315	-
16	0,0500	98,6	(1.000)	0,4 <i>7</i> 968815	(480)	165	480	1	480	-
17	0,0375	101,6	(1.000)	0,591235554	(591)	111	591	1	591	-
18	0,0250	104,7	(1.000)	0,737926695	(738)	147	738	1	738	-
19	0,0125	108,3	(1.000)	0,927247903	(927)	189	927	1	927	-
20	0,0000	120,1	(1.000)	1	(1.000)	73	1.000	1	1.000	-

	Portafoglio B = Portafoglio A + II opzione							
Γ Portfolio "A"			Γ Portfolio	"B"	A Port "B"			
Γ portafolio =		II Option			Т	Б		
Γ I opzione*n.az. Underlying	II Option value	d ₁	Γ II opzione	n. II opzione Buy	Γ II opzione Tot	Γ portafoli o "B"	Total ∆ position	
(15,70)	8,532035235	-0,021383	0,015528736	1.011	15,7 0263	-	496	
(15,56)	9,252966775	0,047578	0,015593814	998	15,5621	-	517	
(16,03)	8,927916787	0,036606	0,016022921	1.000	16,02778	-	514	
(15,66)	9,931752237	0,128265	0,015959581	981	15,65784	-	539	
(15,49)	10,53940858	0,189663	0,016016933	967	15,49118	-	555	
(14,29)	12,45786614	0,339697	0,015333912	932	14,29063	-	589	
(14,93)	11,86551334	0,322986	0,015990036	934	14,92771	-	584	
(13,46)	13,85860752	0,477377	0,015071693	893	13,45713	-	609	
(14,19)	13,09617795	0 ,457377	0,015878178	894	14,18792	-	603	
(13,38)	14,05627045	0,55154	0,015501083	863	13,38009	-	611	
(12,33)	15,14677459	0,657847	0,014924919	826	12,32786	-	614	
(21,67)	6,98437869	0,050779	0,021689614	999	21,66644	-	519	
(25,78)	3,874139145	-0,319605	0,023112366	1.115	25,7778	-	417	
(27,07)	4,158819334	-0,242518	0,024624308	1.099	27,07001	-	444	
(28,11)	1,658383337	-0 <i>,7</i> 54865	0,021897225	1.284	28,10892	-	289	
(30,49)	1,48799424	-0,780121	0,023041342	1.323	30,48717	-	288	
(36,12)	2,582609126	-0,418841	0,029625236	1.219	36,11 <i>7</i> 25	-	411	
(39,46)	3,192341541	-0,217637	0,034269965	1.151	39,45535	-	476	
(39,31)	3,991776369	0,037942	0,039296274	1.000	39,31016	-	515	
(22,82)	5,305213614	0,438792	0,042324222	539	22,82201	-	361	
-	15,20266822	2,445826	0,002983796	-	-	-	_	

Portafoglio "C"= Port. "B"+ azioni f(A hedge di "B")										
Az	A Portfolio "C"									
Stock to Buy/(Sell)	Warehouse	Δ Sto ck	Δ Stock Posit.	Total ∆ position						
(496)	(496)	1	(496)	-						
(21)	(517)	1	(517)	-						
3	(514)	1	(514)	-						
(25)	(539)	1	(539)	-						
(16)	(555)	1	(555)	-						
(34)	(589)	1	(589)	-						
5	(584)	1	(584)	-						
(25)	(609)	1	(609)	-						
6	(603)	1	(603)	-						
(8)	(611)	1	(611)	-						
(3)	(614)	1	(614)	-						
95	(519)	1	(519)	-						
102	(417)	1	(417)	-						
(27)	(444)	1	(444)	-						
155	(289)	1	(289)	-						
1	(288)	1	(288)	-						
(123)	(411)	1	(411)	-						
(65)	(476)	1	(476)	-						
(39)	(515)	1	(515)	-						
154	(361)	1	(361)	-						
361	-	1	-	-						

Composizione quantitativa del portafoglio "C" e valore Δ e Γ										
Sto	ock	Short Opt.	Option	n for F	Delta e	Gamma				
Buy/sell	Warehouse	Short Opt.	Buy/sell	Warehouse	∆ portafogli o C	Γ portafogli o C				
68	68	(1.000)	1.011	1.011	-	-				
9	77	(1.000)	(13)	998	-	-				
-	77	(1.000)	2	1.000	-	-				
14	91	(1.000)	(19)	981	-	-				
10	101	(1.000)	(14)	967	-	-				
23	124	(1.000)	(35)	932	_	-				
2	126	(1.000)	2	934	_	-				
30	156	(1.000)	(41)	893	_	_				
3	159	(1.000)	1	894	_	-				
25	184	(1.000)	(30)	863	-	-				
31	215	(1.000)	(37)	826	-	-				
(105)	110	(1.000)	1 <i>7</i> 3	999	-	-				
(45)	65	(1.000)	116	1.115	-	-				
13	78	(1.000)	(16)	1.099	-	-				
(50)	28	(1.000)	184	1.284	-	-				
(1)	27	(1.000)	39	1.323	-	-				
42	69	(1.000)	(104)	1.219	-	-				
46	115	(1.000)	(68)	1.151	-	-				
108	223	(1.000)	(151)	1.000	-	-				
343	566	(1.000)	(461)	539	-	-				
434	1.000	(1.000)	(539)	-	-	-				

	Delta Gamma Hedging Cash Flow									
Stock	Option	Opt. for Γ		Bank						
Dollars in Stock (flusso)	Cash ex Shorting/Ex ercising Option	Dollars in Option (flusso)	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)				
6.800	10.378	8.628	5.050		5.050					
918		(122)	<i>7</i> 95	3,2	5.848					
-		21	21	3,7	5.8 <i>7</i> 3					
1.460		(191)	1.269	3,7	7.146					
1.059		(147)	912	4,5	8.063					
2.521		(439)	2.082	5,0	10.150					
218		19	237	6,3	10.394					
3.382		(564)	2.818	6,5	13.218					
336		9	345	8,3	13.572					
2.849		(427)	2.422	8,5	16.003					
3.595		(563)	3.032	10,0	19.044					
(10.897)		1.208	(9.689)	11,9	9.367					
(4.396)		451	(3.945)	5,9	5.427					
1.292		(67)	1.226	3,4	6.656					
(4.628)		306	(4.322)	4,2	2.338					
(93)		59	(34)	1,5	2.305					
4.142		(269)	3.8 <i>7</i> 3	1,4	6.180					
4.675		(217)	4.459	3,9	10.643					
11.312		(603)	10.709	6,7	21.358					
37.133		(2.446)	34.686	13,4	56.058					
52.139	(100.000)	(8.198)	43.941	35,0	100.034	8.163				

MANTERRÒ LA SCELTA DELL'OPZIONE "Z" FINO A SCADENZA

ALLA SCADENZA L'OPZIONE "W"FINISCE OUT — THE MONEY

IL Δ HEDGING - SHORT 1 CALL - OUT — THE MONEY

Short 1	.000 call on 1	l stock		Opzione e A		Azione e ∆				ΔPortfolio
			Q.	Δ						
Time Step	Time to Expiration	STOCK PRICE	Opz.	call	Δ call Posit.	Stock to Buy/(Sell)	Warehouse	Δ Stoc k	Δ Stock Posit.	Total ∆ position
0	0,2500	100,0	(1.000)	0,564115961	(564)	564	564	1	564	-
1	0,2375	106,1	(1.000)	0,654729124	(655)	91	655	1	655	-
2	0,2250	104,2	(1.000)	0,627365416	(627)	(28)	627	1	627	-
3	0,2125	104,9	(1.000)	0,639023423	(639)	12	639	1	639	-
4	0,2000	99,0	(1.000)	0,540155862	(540)	(99)	540	1	540	-
5	0,1875	97,9	(1.000)	0,51 <i>7</i> 323489	(517)	(23)	51 <i>7</i>	1	51 <i>7</i>	-
6	0,1750	93,3	(1.000)	0,422696428	(423)	(94)	423	1	423	-
7	0,1625	87,2	(1.000)	0,292594163	(293)	(130)	293	1	293	-
8	0,1500	79,5	(1.000)	0,144979436	(145)	(148)	145	1	145	-
9	0 ,137 5	79,7	(1.000)	0,135689732	(136)	(9)	136	1	136	-
10	0,1250	82,2	(1.000)	0,160714285	(161)	25	161	1	161	-
11	0,1125	87,2	(1.000)	0,239512401	(240)	79	240	1	240	-
12	0,1000	78,3	(1.000)	0,074592914	(75)	(165)	<i>7</i> 5	1	<i>7</i> 5	-
13	0,0875	<i>7</i> 3,1	(1.000)	0,021769947	(22)	(53)	22	1	22	-
14	0,0750	79,2	(1.000)	0,05288132	(53)	31	53	1	53	-
15	0,0625	79,0	(1.000)	0,035901243	(36)	(17)	36	1	36	-
16	0,0500	84,3	(1.000)	0,072705946	(73)	37	73	1	73	-
17	0,0375	84,3	(1.000)	0,044170375	(44)	(29)	44	1	44	-
18	0,0250	78,1	(1.000)	0,001029286	(1)	(43)	1	1	1	-
19	0,0125	74,7	(1.000)	1,09986E-07	-	(1)	-	1	-	-
20	0,0000	71,5	(1.000)	0	-	-	-	1	-	-

IL A HEDGING - SHORT 1 CALL - OUT — THE MONEY

	Portafoglio B = Portafoglio A + II opzione							
Γ Portfolio "A"			Γ Portfolio	"B"	A Port. "B"			
Γ portafolio =		II Option				_		
Γ I opzione*n.az. Underlying	II Option value	d ₁	Γ II opzione	n. II opzione Buy	Γ II opzione Tot	Γ portafoli o "B"	Total ∆ position	
(15,70)	8,532035235	-0,021383	0,015528736	1.011	15,7 0263	-	496	
(14,20)	11,50385049	0,20525	0,014695255	966	14,2025	-	560	
(15,26)	10,14867469	0,128089	0,015552089	982	15,26498	-	540	
(15,44)	10,26284595	0,152333	0,015815246	976	15,43546	-	546	
(17,89)	6,976736039	-0,102274	0,017351704	1.031	17,88561	-	472	
(18,76)	6,201205895	-0,164556	0,017939034	1.046	18,7625	-	454	
(20,03)	4,133050684	-0,402387	0,018178071	1.102	20,02836	-	378	
(19,53)	2,172498556	-0,748035	0,016498971	1.184	19,53189	-	269	
(14,80)	0,749388353	-1,247614	0,011414948	1.296	14,79729	-	137	
(14,73)	0,65845741	-1,293547	0,01117497	1.318	14,73167	-	129	
(16,78)	0,796600892	-1,196629	0,01277235	1.314	16,78149	-	152	
(21,23)	1,339000259	-0,935054	0,016697048	1.271	21,22699	-	222	
(11,38)	0,262019159	-1,638052	0,007932318	1.435	11,38223	-	<i>7</i> 3	
(4,81)	0,056296405	-2,183316	0,003179027	1.513	4,808971	-	22	
(9,95)	0,15339148	-1,813143	0,006580083	1.512	9,948043	-	53	
(7,99)	0,091417259	-1,984494	0,005141739	1.553	7,985569	-	37	
(14,67)	0,195110623	-1,67581	0,009293286	1.578	14,66809	-	74	
(11,44)	0,101824554	-1,893685	0,007045	1.624	11,44363	-	47	
(0,56)	0,002827193	-2,998713	0,000588448	952	0,560244	-	1	
(0,00)	1,29371E-05	-4,25525	7,90033E-06	18	0,000141	-	-	
-	0	-6,843081	6,77257E-12	-	-	-	-	

IL A HEDGING - SHORT 1 CALL - OUT — THE MONEY

Portafoglio "C"= Port. "B"+ azioni f(A hedge di "B")										
Az	A Portfolio "C"									
Stock to Buy/(Sell)	Warehouse	Δ Sto ck	Δ Stock Posit.	Total Δ position						
(496)	(496)	1	(496)							
(64)	(560)	1	(560)							
20	(540)		(540)							
(6)	(546)		(546)							
74	(472)	1	(472)	-						
18	(454)	1	(454)	-						
76	(378)	1	(378)	-						
109	(269)	1	(269)	-						
132	(137)	1	(137)	-						
8	(129)	1	(129)	-						
(23)	(152)	1	(152)	-						
(70)	(222)	1	(222)	-						
149	(73)	1	(73)	-						
51	(22)	1	(22)	-						
(31)	(53)	1	(53)	-						
16	(37)	1	(37)	-						
(37)	(74)	1	(74)	-						
27	(47)	1	(47)	-						
46	(1)	1	(1)	-						
1	-	1	-	-						
-	-	1	-	-						

IL Δ HEDGING - SHORT 1 CALL - OUT — THE MONEY

Composizione quantitativa del portafoglio "C" e valore Δ e Γ										
Sto	ock	Short Opt.	Option	n for F	Delta e	Gamma				
Buy/sell	Warehouse	Short Opt.	Buylsell	Warehouse	∆ portafogli o C	Γ portafogli o C				
68	68	(1.000)	1.011	1.011	_	_				
27	95	(1.000)	(45)	966	-	-				
(8)	87	(1.000)	15	982	-	-				
6	93	(1.000)	(6)	976	-	-				
(25)	68	(1.000)	55	1.031	-	-				
(5)	63	(1.000)	15	1.046	-	-				
(18)	45	(1.000)	56	1.102	-	-				
(21)	24	(1.000)	82	1.184	-	-				
(16)	8	(1.000)	112	1.296	-	-				
(1)	7	(1.000)	22	1.318	-	-				
2	9	(1.000)	(4)	1.314	-	-				
9	18	(1.000)	(43)	1.271	-	-				
(16)	2	(1.000)	164	1.435	-	-				
(2)	-	(1.000)	<i>7</i> 8	1.513	-	-				
-	-	(1.000)	(1)	1.512	-	_				
(1)	(1)	(1.000)	41	1.553	_	_				
_	(1)	(1.000)	25	1.578	_	_				
(2)	(3)	(1.000)	46	1.624	_	_				
3	-	(1.000)	(672)	952	_	_				
_	-	(1.000)	(934)	18	-	_				
-	-	(1.000)	(18)	-	-	-				

IL Δ HEDGING - SHORT 1 CALL - OUT — THE MONEY

Delta Gamma Hedging Cash Flow										
Stock	Option	Opt. for Γ		Bank						
Dollars in Stock (flusso)	Cash ex Shorting/Exe reising Option	Dollars in Option (flusso)	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)				
6.800	10.3 <i>7</i> 8	8.628	5.050		5.050					
2.864		(515)	2.349	3,2	7.402					
(833)		153	(680)	4,6	6.727					
629		(57)	572	4,2	7.303					
(2.476)		382	(2.093)	4,6	5.214					
(490)		94	(396)	3,3	4.822					
(1.680)		231	(1.449)	3,0	3.376					
(1.832)		1 <i>7</i> 8	(1.654)	2,1	1.725					
(1.272)		84	(1.188)	1,1	538					
(80)		14	(65)	0,3	473					
164		(3)	161	0,3	634					
<i>7</i> 85		(57)	728	0,4	1.363					
(1.253)		43	(1.210)	0,9	153					
(146)		4	(142)	0,1	11					
-		(0)	(0)	0,0	11					
(79)		4	(75)	0,0	(64)					
-		5	5	(0,0)	(59)					
(169)		5	(164)	(0,0)	(223)					
234		(2)	232	(0,1)	9					
-		(0)	(0)	0,0	9					
-	-	-	-	0,0	9	(9)				

IL $\Delta - \Gamma - \upsilon$ hedging

Derivazione di df attraverso la formula di Taylor, arrivando al secondo termine e prendendosi cura della volatilità

$$dfpprox \Delta dS + rac{1}{2}\Gamma dS^2 + rac{\partial f}{\partial \sigma}d\sigma + o(dt)$$

AL TEMPO T=0 SHORT 1 CALL

Come faccio a rendere il mio portafoglio anche Γ - ν neutrale

IL $\Delta - \Gamma - U$ HEDGING

...UN'INTUIZIONE È DI SEGUIRE UNA LOGICA ITERATIVA

RICOMPOSIZIONE
PER LA

NEUTRALITY

PORTAFOGLIO

| NEUTRAL

PORTAFOGLIO

U NEUTRAL

124

...QUESTA LOGICA NON È CORRETTA

...se il Γ -V di un'azione è 0 ...purtroppo il Γ dell'opzione NoN è 0

...HO BISOGNO DI UN'ALTRA OPZIONE

...E POI DOVRÒ FAR SI CHE IL PORTAFOGLIO SIA CONGIUNTAMENTE Γ -V NEUTRALE

...ALTRIMENTI ENTRO IN UN LOOP SENZA SOLUZIONE

IL $\Delta - \Gamma - U$ HEDGING

...IL LOOP "VIZIOSO" È IL SEGUENTE

RICOMPOSIZIONE
PER LA

NEUTRALITY

PORTAFOGLIO | NEUTRAL

PORTAFOGLIO U NEUTRAL

IL $\Delta - \Gamma - U$ HEDGING

...IL LOOP "VIRTUOSO" È IL SEGUENTE

RICOMPOSIZIONE
PER LA

NEUTRALITY

UTILIZZO CONGIUNTO
DELLE 2 OPZIONI

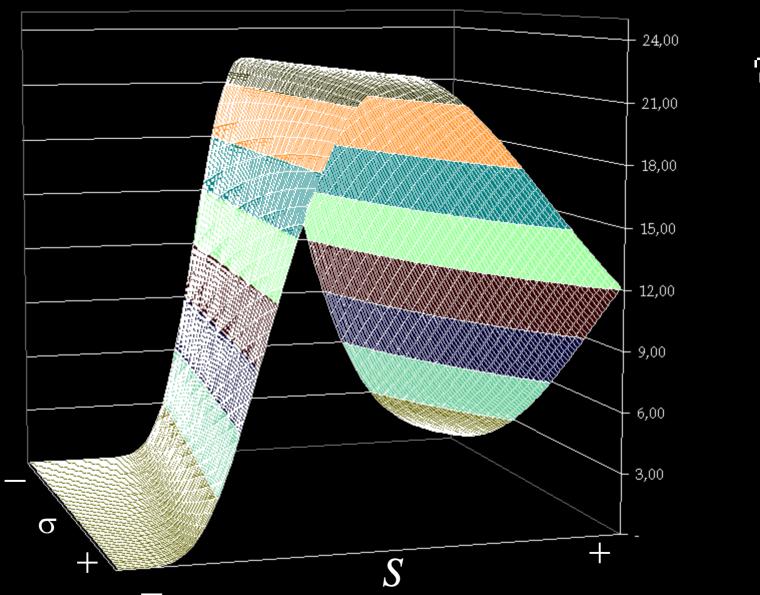
PORTAFOGLIO \(\Gamma - \mathbb{U} \) NEUTRAL

...CHE TIPO DI OPZIONI?

...OPZIONI CHE MI PAREGGINO IL Γ - \cup DELLA OPZIONE "SHORTATA"

...CHE TIPO DI OPZIONI?

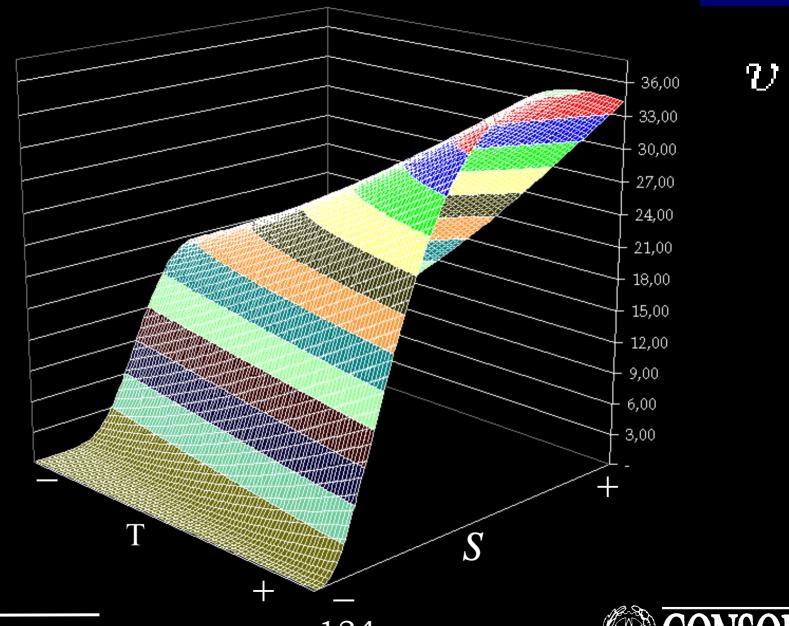
...E CHE NON MI CREI TROPPE
"DEFORMAZIONI" SUL DELTA DELLA
OPZIONE "SHORTATA"


...CHE TIPO DI OPZIONI?

...ALCUNE CONSIDERAZIONI

IL Û DI UN'OPZIONE È MAGGIORE PER LE ATM

IL $\Delta - \Gamma - U$ HEDGING


CONSOR

...CHE TIPO DI OPZIONE?

...ALCUNE CONSIDERAZIONI

IL U DI UN'OPZIONE FONDAMENTALMENTE SI RIDUCE AL PASSARE DEL TEMPO

IL $\Delta - \Gamma - U$ HEDGING

CONSOR

IL $\Delta - \Gamma - V$ HEDGING

IL U DI UN'OPZIONE È MAGGIORE PER LE ATM IL Ü DI UN'OPZIONE FONDAMENTALMENTE SI RIDUCE AL PASSARE DEL TEMPO

RI-COMPORRE DINAMICAMENTE IL PORTAFOGLIO CON OPZIONI A LUNGA DURATA ATM

IL $\Delta - \Gamma - V$ HEDGING

RI-COMPORRE DINAMICAMENTE IL PORTAFOGLIO CON OPZIONI A LUNGA DURATA ATM

CONSIDERARE

- Costi di Transazione
- STRATEGIE DI TRADING
- RISK LIMIT
-

AL TEMPO T=0

SHORT 1 CALL (W)

DEFINISCO UN PORTAFOGLIO A NEUTRALE "A"

LONG 1 OPZIONE (Z)

Long 1 opzione (y)

$$\Delta_{A} = 0$$

$$\Gamma_{\!\!\!A} = N * \Gamma_{\!\!\!\!W}$$

AL TEMPO T=0

PORTFOLIO B = PORT. A + N * Z + N * Y

...LE GRECHE DI B?

AL TEMPO T=0

$$\Delta_{B} = \Delta_{A+N_{Z}} \Delta_{Z+N_{Y}} \Delta_{Y}$$

$$\Delta_{B} = N_{Z}\Delta_{Z} + N_{Y}\Delta_{Y}$$

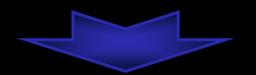
AL TEMPO T=0

$$\Gamma_B = n_w \Gamma_w + n_z \Gamma_z + n_y \Gamma_y$$

DATO CHE:

$$\Gamma_{A} = N_{W}\Gamma_{W}$$

AL TEMPO T=0


$$v_{\scriptscriptstyle B} = n_w v_{\scriptscriptstyle w} + n_z v_{\scriptscriptstyle z} + n_y v_{\scriptscriptstyle y}$$

DATO CHE:

$$D^{A} = N^{M}D^{M}$$

...da qui che per avere $\Gamma_{\rm B}$ =0cioè un portafoglio Γ - ν 0 neutrale

$$egin{cases} 0 = n_w \Gamma_w + n_z \Gamma_z + n_y \Gamma_y \ 0 = n_w v_w + n_z v_z + n_y v_y \end{cases}$$

$$egin{aligned} 0 &= n_w \Gamma_w + n_z \Gamma_z + n_y \Gamma_y \ 0 &= n_w v_{_w} + n_z v_{_z} + n_y v_{_y} \end{aligned}$$

$$\int n_z = rac{-n_w \Gamma_w - n_y \Gamma_y}{\Gamma_z}$$

$$\int n_{z} = rac{-n_{w}\Gamma_{w}-n_{y}\Gamma_{y}}{\Gamma_{z}}$$
 $\int 0 = n_{w}v_{w} + rac{-n_{w}\Gamma_{w}-n_{y}\Gamma_{y}}{\Gamma_{z}}v_{z} + n_{y}v_{y}$

$$\begin{cases} 0 = n_w v_w + \frac{-n_w \Gamma_w - n_y \Gamma_y}{\Gamma_z} v_z + n_y v_y \\ \\ 0 = n_w v_w \Gamma_z - n_w \Gamma_w v_z - n_y \Gamma_y v_z + n_y v_y \Gamma_z \end{cases}$$

IL $\Delta - \Gamma - U$ hedging in formule

$$egin{aligned} n_y &= rac{-n_w v_w \Gamma_z + n_w \Gamma_w v_z}{(v_y \Gamma_z - \Gamma_y v_z)} \ n_z &= rac{-n_w \Gamma_w - n_y \Gamma_y}{\Gamma_z} \ n_z &= rac{-n_w \Gamma_w - \left(rac{-n_w v_w \Gamma_z + n_w \Gamma_w v_z}{(v_y \Gamma_z - \Gamma_y v_z)}
ight) \Gamma_y}{\Gamma_z} \end{aligned}$$

IL $\Delta - \Gamma - U$ hedging in formule

$$egin{aligned} \int n_z &= rac{-n_w \Gamma_w - \left(rac{-n_w
u_w \Gamma_z + n_w \Gamma_w
u_z}{(
u_y \Gamma_z - \Gamma_y
u_z)}
ight) \Gamma_y}{\Gamma_z} \ n_z &= -rac{n_w \Gamma_w}{\Gamma_z} - \left(rac{-n_w
u_w \Gamma_z + n_w \Gamma_w
u_z}{(
u_y \Gamma_z - \Gamma_y
u_z)}
ight) rac{\Gamma_y}{\Gamma_z} \end{aligned}$$

...DA QUI CHE PER AVERE
$$\Gamma_{\rm B} = V_{\rm B} = 0$$

SI DOVRANNO NEGOZIARE

$$n_z=-rac{n_w\Gamma_w}{\Gamma_z}-\left(rac{-n_w
u_w \Gamma_z+n_w \Gamma_w
u_z}{(
u_v \Gamma_z-\Gamma_v
u_z)}
ight)rac{\Gamma_v}{\Gamma_z}$$
 Opzioni z

$$n_y = rac{-n_w arphi_w \Gamma_z + n_w \Gamma_w arphi_z}{(arphi_y \Gamma_z - \Gamma_y arphi_z)}$$

OPZIONI Y

...MA NON È FINITA QUI.

IL NUOVO PORTAFOGLIO B NON SARÀ A NEUTRALE

$$\Delta_{B} = N_{Z}\Delta_{Z} + N_{Y}\Delta_{Y}$$

RI-BILANCIARE IL PORTAFOGLIO A TAL FINE:

$$\Delta_{c} = 0$$

KURPIEL & RONCALLI (1998)

IL $\Delta - \Gamma - \upsilon$ HEDGING SU ORIZZONTI DI 5, 1, ½
GIORNI DÀ VANTAGGI SOSTANZIALI SOPRATTUTTO IN
CONTESTI A VOLATILITÀ STOCASTICA

MANTERRÒ LA SCELTA DELL'OPZIONE "Z" FINO A SCADENZA

ALLA SCADENZA L'OPZIONE "W"FINISCE OUT — THE MONEY

$IL\Delta-\Gamma-V$ HEDGING

Short 10	000 call on 1	stock	Ора	zione e <i>l</i>	Δ		Azione e	eΔ		ΔPortfolio	Γ Portfolio "A"	υ Portfolio "A"
			Q.	Δ							Γ portafolio =	υ portafolio =
Time Step 1	Time to Expiration	STOCK PRICE	Opz.	can	Posit.	Buy/(Sell)		Δ Stoc k	Δ Stock Posit.		Γ I opzione*n.az. Underlying	U I opzione*n.az. Underlying
0	0,2500	100,0					564	1	564	-	(15,70)	
1	0,2375	99,6	<u> </u>					1	557	-	(16,22)	
2	0,2250	101,0	·				577	1	577	-	(16,30)	
3	0,2125	107,8	(1.000)	0,683	(683)	106	683	1	683	-	(14,28)	(17.643)
4	0,2000	109,0	(1.000)	0,701	(701)	18	701	1	701	-	(14,19)	(16.847)
5	0,1875	109,1	(1.000)	0,706	(706)	5	706	1	706	-	(14,52)	(16.208)
б	0,1750	108,7	(1.000)	0,703	(703)	(3)	703	1	703	-	(15,17)	(15.681)
7	0,1625	103,6	(1.000)	0,621	(621)	(82)	621	1	621	-	(18,17)	(15.857)
8	0,1500	93,6	(1.000)	0,414	(414)	(207)	414	1	414	-	(21,48)	(14.107)
9	0,1375	91,9	(1.000)	0,370	(370)	(44)	370	1	370	-	(22,12)	(12.855)
10	0,1250	86,2	(1.000)	0,234				1	234	-	(20,12)	
11	0,1125	87,6	(1.000)	0,249			249	1	249	-	(21,56)	
12	0,1000	87,9	(1.000)				239	1	239	-	(22,28)	
13	0,0875	83,6	(1.000)					1	133	-	(17,40)	
14	0,0750	92,0	(1.000)				303	1	303	-	(27,69)	
15	0,0625	95,0	(1.000)				370	1	370	-	(31,80)	
16	0,0500	91,5						1	235	-	(30,01)	

(3.378)

(3.245)

(22,96)

(31,01)

117

142

45

1

1

1

1

117

142

45

88,6

91,5

90,8

87,5

(1.000) 0,117

(1.000) 0,000

0,142

0,045

(1.000)

(1.000)

(117)

(142)

(45)

(118)

25

(97)

(45)

0,0375

0,0250

0,0125

0,0000

17

18

19

20

Portafoglio B = Portafoglio A + Π opzione + Π opzione															
	Γ–υ Portfolio "B"														
	II Option]	II Option											
II Option value	Γ II opzione	υ II opzione	III Option value	Γ III opzione	υ III opzione	n. II opzione Buy/sell	n. III opzione buy/sell	Γ II opzione Tot	Γ III opzione Tot	υ II opzione Tot	ບ III opzione Tot	Γ portafoli o "B"	υ portafol io "B"	Total Δ	
8,5320	0,0155	20,3815	10,8995	0,0149	20,5532	2.022	(1.051)	31	(16)	41.219	(21.591)	-	-	396	
8,0880	0,0160	19,8035	10,4330	0,0154	20,0694	2.033	(1.053)	32	(16)	40.253	(21.133)	-	-	388	
8,4726	0,0162	19,5841	10,9321	0,0154	19,6781	2.015	(1.056)	33	(16)	39.471	(20.774)	-	-	394	
11,9678	0,0150	19,6378	14,9784	0,0136	18,7267	1.903	(1.053)	29	(14)	37.361	(19.718)	-	-	435	
12,3611	0,0151	19,0413	15,4827	0,0135	17,9868	1.880	(1.054)	28	(14)	35.800	(18.953)	-	-	435	
12,1542	0,0155	18,4611	15,3176	0,0137	17,3926	1.873	(1.056)	29	(15)	34.577	(18.369)	-	-	429	
11,5627	0,0162	17,9031	14,7232	0,0143	16,9039	1.877	(1.060)	30	(15)	33.603	(17.922)	-	-	420	
8,3385	0,0183	17,2177	11,0967	0,0169	17,0414	1.984	(1.074)	36	(18)	34.153	(18.296)			385	
3,6873	0,0192	13,6472	5,4801	0,0200	15,3406	2.240	(1.073)	43	(21)	30.564	(16.458)	-	-	280	
2,9088	0,0191	12,1340	4,5198	0,0206	14,1752	2.311	(1.072)	44	(22)	28.047	(15.192)	-	-	250	
1,3645	0,0160	8,1671	2,3963	0,0195	10,8369	2.516	(1.034)	40	(20)	20.552	(11.210)	-	-	165	
1,4154	0,0170	8,1 <i>77</i> 8	2,5330	0,0206	10,8703	2.529	(1.046)	43	(22)	20.683	(11.376)	-	-	170	
1,2554	0,0172	7,4960	2,3531	0,0213	10,2705	2.584	(1.048)	45	(22)	19.373	(10.763)	-	-	160	
0,5252	0,0124	4,3301	1,1807	0,0180	7,0894	2.811	(966)	35	(17)	12.172	(6.847)	-	-	92	
1,5434	0,0214	7,9223	2,9890	0,0251	10,6184	2.591	(1.105)	55	(28)	20.527	(11.730)	-	-	182	
1,9092	0,0249	8,4316	3,6923	0,0275	10,8487	2.551	(1.157)	64	(32)	21.510	(12.547)	-	-	200	
0,8656	0,0207	5,4135	2,0986	0,0272	8,5335	2.899	(1.103)	60	(30)	15.693	(9.416)	-	-	128	
0,3133	0,0141	2,7735	1,0744	0,0243	5,9569	3.248	(945)	46	(23)	9.008	(5.630)	-	-	63	
0,3420	0,0179	2,8077	1,3338	0,0300	6,2870	3.467	(1.032)	62	(31)	9.735	(6.490)	-	-	59	
0,1031	0,0113	1,1613	0,7943	0,0293	4,5360	3.342	(642)	38	(19)	3.881	(2.911)			11	
8000,0	0,0005	0,0221	0,1448	0,0152	1,4579				-	-				-	

Portafoglio "C"= Port. "B"+ azioni f(A hedge di "B")												
Az	zione e A Po	ortfo]	lio	∆ Portfolio "C"								
Stock to Buy/(Sell)	Warehouse	Δ Sto ck	Δ Stock Posit.	Total ∆ position								
(396)	(396)	1	(396)	-								
8	(388)		(388)									
(6)	(394)		(394)									
(41)	(435)		(435)									
_	(435)		(435)	-								
6	(429)		(429)									
9	(420)		(420)									
35	(385)		(385)									
105	(280)		(280)									
30	(250)		(250)									
85	(165)		(165)									
(5)	(170)	1	(170)	-								
10	(160)	1	(160)	-								
68	(92)	1	(92)	-								
(90)	(182)		(182)	-								
(18)	(200)	1	(200)	-								
72	(128)	1	(128)	-								
65	(63)	1	(63)	-								
4	(59)	1	(59)	-								
48	(11)	1	(11)	_								
11	-	1	-	-								

	Comp	posizione	quantita	itiva del _I	ortafogl	io "C" e v	alore ∆ e	Γευ	
Sto	ck	Short Opt.	Option	n for F	Option	n for U	Delta e	Gamma	Vega
D ()	T47 3	81		T	- · ·	747	Δ	Γ	υ
Buy/sell	Warehouse	Short Opt.	Buytsell	Warehouse	Buylsell	Warehouse	portafogli o C	portafogli o C	portafogl io C
168	168	(1.000)	2.022	2.022	(1.051)	(1.051)	-	-	-
1	169	(1.000)	10	2.033	(2)	(1.053)	-	-	-
14	183	(1.000)	(17)	2.015	(3)		-	-	-
65	248	(1.000)	(113)	1.903	3	(1.053)	-	-	-
18	266	(1.000)	(22)	1.880	(1)	(1.054)	-	-	-
11	277	(1.000)	(7)	1.873	(2)	(1.056)	-	-	-
б	283	(1.000)	4	1.877	(4)	(1.060)	-	-	-
(47)	236	(1.000)	107	1.984	(13)	(1.074)	-	-	-
(102)	134	(1.000)	256	2.240	1	(1.073)	-	_	-
(14)	120	(1.000)	72	2.311	1	(1.072)	_	_	_
(51)	69	(1.000)	205	2.516	37	(1.034)	_	_	_
10	79	(1.000)	13	2.529	(12)	(1.046)	_	_	_
_	79	(1.000)	55	2.584	(1)	(1.048)	_	_	_
(38)	41	(1.000)	227	2.811	82	(966)	_	_	-
80	121	(1.000)	(220)	2.591	(139)	(1.105)	-	_	_
49	170	(1.000)	(40)	2.551	(52)	(1.157)	_	_	-
(63)	107	(1.000)	348	2.899	53	(1.103)	-	-	-
(53)	54	(1.000)	349	3.248	158	(945)	-	-	-
29	83	(1.000)	219	3.467	(87)	(1.032)	_	_	-
(49)	34	(1.000)	(125)	3.342	391	(642)	-	-	-
(34)	-	(1.000)	(3.342)	_	642	_	_	_	_

		Delta G	amma He	dging Cash	Flow		
Stock	Option	Opt. for Γ	Opt. for U		Bank		
Dollars in Stock (flusso)	Cash ex Shorting/Exer cising Option	Dollars in Option (flusso)	Dollars in Option (flusso)	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)
16.800	10.3 <i>7</i> 8	17.255	(11.450)	12.228		12.228	
100		83	(26)	156	7,6	12.392	
1.414		(145)	(30)	1.239	7,7	13.638	
7.009		(1.352)	41	5.698	8,5	19.345	
1.961		(277)	(12)	1.6 <i>7</i> 3	12,1	21.029	
1.200		(87)	(37)	1.076	13,1	22.119	
652		46	(60)	638	13,8	22.771	
(4.871)		889	(149)	(4.131)	14,2	18.654	
(9.545)		944	5	(8.596)	11,7	10.069	
(1.287)		209	5	(1.073)	6,3	9.002	
(4.396)		280	89	(4.027)	5,6	4.981	
876		18	(30)	864	3,1	5.848	
-		69	(3)	66	3,7	5.918	
(3.178)		119	97	(2.962)	3,7	2.959	
7.363		(340)	(415)	6.608	1,9	9.569	
4.653		(76)	(192)	4.385	6,0	13.961	
(5.763)		301	112	(5.350)	8 <i>,</i> 7	8.619	
(4.695)		109	170	(4.416)	5,4	4.209	
2.653		75	(116)	2.612	2,6	6.824	
(4.449)		(13)	310	(4.152)	4,3	2.676	
(2.976)	-	-	93	(2.883)	1,7	(205)	205

MANTERRÒ LA SCELTA DELL'OPZIONE "Z" FINO A SCADENZA

ALLA SCADENZA L'OPZIONE "W"FINISCE IN – THE MONEY

IL $\Delta - \Gamma - U$ HEDGING

Short 10	000 call on 1	stock	Opa	zione e <i>l</i>	Δ		Azione e	eΔ		ΔPortfolio	Γ Portfolio "A"	υ Portfolio "A"
Time Step I	Time to Expiration	TRICE	Q. Opz.		Posit.	Buy/(Sell)		k	Δ Stock Posit.	Total ∆ position	Γ I opzione*n.az. Underlying	υ I opzione*n.az. Underlying
0	0,2500	100,0	(1.000)	0,564	(564)	564	564	1	564	-	(15,70)	(19.628)
1	0,2375	102,9	(1.000)	0,607	(607)	43	607	1	607	-	(15,28)	(19.202)
2	0,2250	96,9	(1.000)	0,508	(508)	(99)	508	1	508	-	(17,31)	(18.291)
3	0,2125	94,2	(1.000)	0,456	(456)			1	456	-	(18,23)	(17.176)
4	0,2000	92,4	(1.000)	0,417				1	417	-	(18,87)	
5	0,1875	91,9	(1.000)	0,402	(402)			1	402	-	(19,41)	(15.368)
6	0,1750	97,1	(1.000)	0,499			499	1	499	-	(19,60)	
7	0,1625	98,0	(1.000)	0,512			512	1	512	-	(20,16)	
8	0,1500	107,3	(1.000)	0,688			688	1	688	-	(16,96)	• • •
9	0,1375	107,6	(1.000)	0,697			697	1	697	-	(17,45)	
10	0,1250	113,8	· ·				801	1	801	-	(13,82)	
11	0,1125	105,2						1	660	-	(20,72)	
12	0,1000	105,8	<u> </u>		─ `		677	1	677	-	(21,42)	• • •
13	0,0875	107,5	_ `				721	1	721	-	(21,09)	
14	0,0750	110,8	· ·				800	1	800	-	(18,42)	

128

б1

б

3

2

CONSOB

(9,17)

(1,89)

(1,03)

(0,47)

(4.049)

(782)

(317)

(93)

928

989

995

998

1.000

1.000

1

1

1

1

1

1

928

989

995

998

1.000

1.000

118,9

128,5

128,1

126,1

129,5

135,4

0,928

0,998

(1.000) | 1,000 | (1.000)

(928)

(989)

(995)

(998)

(1.000)

(1.000)

(1.000)

(1.000) 0,989

(1.000) 0,995

(1.000) 1,000

0,0625

0,0500

0,0375

0,0250

0,0125

0,0000

15

16

17

18

19

20

$IL\Delta - \Gamma - U$ HEDGING

Portafoglio B = Portafoglio A + II opzione + III opzione

	Γ–ν Portfolio "B"													
	II Option			III Option										
II Option	Гп	υII	III Option	ΓIII	υIII	n. II	n. III	Гп	Гш	υII	υm	Γ	υ	m A
value	opzione	opzione	value	opzione	opzione	opzione	opzione	opzione	opzione	opzione		portafoli	portafol	Total Δ
						Buy/sell	buy/sell	Tot	Tot	Tot	Tot	o "B"	io "B"	position
8,5320	0,0155	20,3815	10,8995	0,0149	20,5532	2.022	(1.051)	31	(16)	41.219	(21.591)	-	-	396
9,7225	0,0154	20,3963	12,3193	0,0145	20,1679	1.982	(1.052)	31	(15)	40.426	(21.224)	-	-	413
6,5788	0,0166	18,5301	8,7069	0,0164	19,2663	2.084	(1.055)	35	(17)	38.614	(20.323)	-	-	358
5,2071	0,0170	16,9797	7,1031	0,0173	18,1947	2.142	(1.055)	36	(18)	36.374	(19.197)	-	-	324
4,3079	0,0172	15,6141	6,0409	0,0179	17,1595	2.190	(1.055)	38	(19)	34.192	(18.102)	-	-	298
3,9135	0,0175	14,7975	5,5943	0,0184	16,4811	2.216	(1.057)	39	(19)	32.785	(17.417)	-	-	285
5,5771	0,0185	16,3570	7,7242	0,0183	17,2915	2.120	(1.069)	39	(20)	34.674	(18.493)	-	-	335
5,6346	0,0191	16,0207	7,8617	0,0188	16,8732	2.114	(1.075)	40	(20)	33.864	(18.141)	-	-	336
10,0788	0,0179	16 <i>,7</i> 351	13,1938	0,0158	15,9604	1.898	(1.072)	34	(17)	31.762	(17.102)	-	-	398
9,8899	0,0185	16,0717	13,0655	0,0162	15,2678	1.887	(1.076)	35	(17)	30.323	(16.425)	-	-	390
13,5852	0,0162	14,3971	17,3239	0,0132	12,7919	1.709	(1.049)	28	(14)	24.608	(13.423)	-	-	389
<i>7,7</i> 618	0,0212	14,7012	10,7844	0,0189	14,3646	1.951	(1.098)	41	(21)	28.678	(15.773)	-	-	35 <i>7</i>
7,6759	0,0222	13,9702	10,7993	0,0194	13,5542	1.931	(1.106)	43	(21)	26.975	(14.986)	-	-	346
8,2416	0,0227	13,1200	11,5999	0,0191	12,4028	1.858	(1.106)	42	(21)	24.383	(13.716)	-	-	334
9,9227	0,0218	11,7366	13,6940	0,0171	10,5019	1.688	(1.078)	37	(18)	19.806	(11.318)	-	-	310
15,6275	0,0149	7,8992	20,1172	0,0102	6,2860	1.230	(902)	18	(9)	9.718	(5.669)	-	-	225
24,0642	0,0059	3,0260	28,9788	0,0036	2,2120	646	(530)	4	(2)	1.955	(1.173)	-	-	101
23,5122	0,0050	2,0470	28,4795	0,0029	1,5131	412	(349)	2	(1)	844	(528)	-	-	57
21,3530	0,0048	1,4442	26,3520	0,0028	1,1223	193	(165)	1	(0)	278	(185)	-	-	25
24,6183	0,0010	0,2100	29,6596	8000,0	0,2379	2	(1)	0	(0)	0	(0)	-	-	1
30,4471	00000,0	0,0002	35,4896	0,0000	0,0045	-	-	-	-	-	-	-	-	-

IL $\Delta - \Gamma - \upsilon$ hedging

Portafoglio "C"= Port. "B"+ azioni f(A hedge di "B")														
Az	Azione e Δ Portfolio Δ Portfolio "													
Stock to Buy/(Sell)	Warehouse	Δ Sto ck	Δ Stock Posit.	Total Δ position										
(396)	(396)		(396)	-										
(17)	(413)		(413)											
55	(358)		(358)	-										
34	(324)		(324)	-										
26	(298)		(298)	-										
13	(285)		(285)	-										
(50)	(335)		(335)	-										
(1)	(336)	1	(336)	-										
(62)	(398)	1	(398)	-										
8	(390)	1	(390)	-										
1	(389)	1	(389)	-										
32	(357)	1	(357)	-										
11	(346)	1	(346)	-										
12	(334)	1	(334)	-										
24	(310)	1	(310)	-										
85	(225)	1	(225)	_										
124	(101)	1	(101)	-										
44	(57)	1	(57)	-										
32	(25)	1	(25)	-										
24	(1)	1	(1)	-										
1	-	1	-	-										

	Composizione quantitativa del portafoglio "C" e valore Δ e Γ e υ												
Sto	ock	Short Opt.	Option	n for F	Option	ı for U	Delta e	Gamma	Vega				
D/11	T4/	St	D!	T4/1	D!	T47	Δ	Γ	υ				
Buy/sell	Warehouse	Short Opt.	Buytsell	Warehouse	Buytsell	Warehouse	portafogli o C	portafogli o C	portafogl io C				
168	168	(1.000)	2.022	2.022	(1.051)	(1.051)	-	-	-				
26	194	(1.000)	(40)	1.982	(2)	(1.052)	-	-	-				
(44)	150	(1.000)	102	2.084	(3)	(1.055)	-	-	-				
(18)	132	(1.000)	58	2.142	(0)	(1.055)	-	-	-				
(13)	119	(1.000)	48	2.190	0	(1.055)	-	-	-				
(2)	117	(1.000)	26	2.216	(2)	(1.057)	-	-	-				
47	164	(1.000)	(96)	2.120	(13)	(1.069)	-	-	-				
12	176	(1.000)	(6)	2.114	(6)	(1.075)	-	-	-				
114	290	(1.000)	(216)	1.898	4	(1.072)	-	-	-				
17	307	(1.000)	(11)	1.887	(4)	(1.076)	-	-	-				
105	412	(1.000)	(177)	1.709	26	(1.049)	_	-	-				
(109)	303	(1.000)	241	1.951	(49)	(1.098)	_	-	-				
28	331	(1.000)	(20)	1.931	(8)	(1.106)	_	-	-				
56	38 <i>7</i>	(1.000)	(72)	1.858	(0)	(1.106)	_	-	-				
103	490	(1.000)	(171)	1.688	28	(1.078)	_	-	-				
213	703	(1.000)	(457)	1.230	176	(902)	-	-	-				
185	888	(1.000)	(584)	646	372	(530)	_	-	-				
50	938	(1.000)	(234)	412	182	(349)	_	_	-				
35	973	(1.000)	(220)	193	183	(165)	_	_	-				
26	999	(1.000)	(191)	2	164	(1)	-	_	-				
1	1.000	(1.000)	(2)	-	1	-	-	-	-				

		Delta C	amma He	dging Cash	Flow		
Stock	Option	Opt. for C	Opt for U		Bank		
Dollars in Stock (flusso)	Cash ex Shorting/Exer cising Option	Dollars in Option (flusso)	Dollars in Option (flusso)	Cash	Interest (flusso)	Borrow (stock)	Hedging Revenue (cost)
16.800	10.3 <i>7</i> 8	17.255	(11.450)	12.228		12.228	
2.674		(393)	(23)	2.259	7,6	14.494	
(4.264)		670	(22)	(3.616)	9,1	10.888	
(1.695)		304	(2)	(1.393)	6,8	9.502	
(1.201)		205	1	(994)	5,9	8.514	
(184)		101	(10)	(94)	5,3	8.425	
4.565		(534)	(98)	3.933	5,3	12.364	
1.176		(34)	(45)	1.097	7,7	13.468	
12.238		(2.176)	48	10.110	8,4	23.586	
1.830		(111)	(55)	1.664	14,7	25.265	
11.950		(2.411)	459	9.998	15,8	35.278	
(11.471)		1.874	(525)	(10.122)	22,1	25.1 7 8	
2.963		(152)	(82)	2.728	15,7	27.922	
6.021		(597)	(2)	5.422	17,5	33.361	
11.417		(1.696)	386	10.106	20,9	43.489	
25.319		(7.146)	3.538	21. <i>7</i> 11	27,2	65.227	
23.774		(14.061)	10.769	20.482	40,8	85.750	
6.406		(5.492)	5.170	6.084	53,6	91.888	
4.413		(4.693)	4.834	4.554	57,4	96.499	
3.367		(4.690)	4.860	3.53 <i>7</i>	60,3	100.096	
135	(100.000)	-	49	185	62,6	100.343	(343)

L'HEDGING DI UN INTERMEDIARIO

RISK MANAGEMENT
DI UN INTERMEDIARIO

PROBLEMI

LIMITI DI RISCHIO

OPZIONI PRIVE
DI FORMULE CHIUSE

FUNZIONAMENTO DEL MERCATO

UTILIZZO DI GRECHE NUMERICHE

Cos'è una greca numerica?

$$\Delta = \frac{1}{2}(\Delta_{+1\%} + \Delta_{-1\%})$$

$$\Gamma = \frac{1}{2}(\Gamma_{+1\%} + \Gamma_{-1\%})$$

$$v = \frac{1}{2}(v_{+1\%} + v_{-1\%})$$

...SI TRALASCIANO VOLUTAMENTE LE ALTRE PERCHÉ DI SCARSO RILIEVO